AD-A241 691
(R R AR

VOLUME 1
PART 1

TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATORY

REPORT NO. AR-0142-91-001
September 27, 1991

DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89-C-0142
Sponsored By

The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY
Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

Contract Data Requirements List Item AQQS
Period Covered: FY 91

Type Report: Annual

o RS i
Sy R
2 Vi _ ;vp
A ki S ‘
Nl .
H
"
‘}:‘ SV B
fEgt 0.0 e
h&’!f\. ._‘;, A t -

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

SECURITY CLASSITICATION OF TiiiS PAGE
Form Appircved
REPORT DOCUMENTATION PAGE OMEB No 0704 0185
ta REPORY SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
Unclassified)
28 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORI . .
1DApproved for public release; distribnti
2b DECLASSIICATION / DOWNGRADING SCHEDULE is unlimited
2) continued on reverse side
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)
AR-0142-91-002
62 MAME OF FERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
School of Electrical Eng. (' applicatie)
Ceorgia Tech U.S. Army Strategic Defense Command
Fc ADDRESS (City, State, and ZiP Code) 7b ADDRESS (City. State, and 2IP Code)
Atlanta, Georgia 30332 P.0. Box 1500
Huntsville, AL 35807-380!
Ba NANME OF FUNDING /SFONSORING I8b OfFiTE SvrimOt 9 PAOCUNELIENG iS5 TAUMENT iDL 1ITICATION NUMBER
ORGANIZATION {1t applicable)
DASG60-89-C-0142
8¢ ADORESS {City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK ytit
ELEMENT NO. NO. NO ACCESSION ¢

1 THILE (Include Security Classification)

Guidance, Navigation and Control Digital Emulation Technology Laboratory

Volume I (Unclassified) Part |, 2 and 3

12 FERSONAL AUTHOR(S)

C. 0. Alford, Thomas R. Collins, Stephen R. Wachtel

132 52 7E OF REPORNT 13b TIME COVERED 14 DALE OF REFORT (Year, Month, Day) 1S PAGE COUNI
Annual fROM 9/28/90_ 109/27/91 9/27/91 434

Th SUPPLEMENTARY NOTATION

Voo COSAl CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FELp GROUP SUB-GROUP

19 ARSIPACT (Continue on reverse il necessary and identify by block number)

Part | a, Software Development Tools
. Introduction 4.1 Introduction
1.1 Objectives 4.2 Sequential Programming
].2 Schedules & Milestones Tools .
2. Hardware & Facilities 4.3 Parallel Programming To.
2.1 Parallel Function Processor 4.4 Sepcial purpose tools
2.2 Seeker Scene Emulator 5. Application Software
2.3 Other computer systems 5.1 EXOSIM
2.4 Secure Laboratory 5.2 LEAP
3. FPP/FPX Development Tools 6. Appendix A: Environment Fil.
3.1 Introduction Format
3.2 FPP/FPX object module loader Appendix B: Vicid Program
3.3 FPP/FPX program downloader Source (Over)
20 DISTRIAYTION 7 AVAILABILITY OF ARSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
Bl unciassineounumited [saME AS /et (e serne Mnelneeif o4
LL. NASIE OF RESPONSIALE INDIVIDUAL 776 TELEPHONE (include Area Code) [22¢ OFFICE SYMBOL
DO form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS FAGE

UNCLASSIFIED

Hv(WIrity-??iassi fica

Distribut
2)

Part 2
9.
10.
11.
12.
13.
P4 .
15.
16.
17.
1 8.

Part 3

This materi

ion statement continued

' al may be reproduced by or for the U.S.
license under the clauge at DFARS252.227-7013,

aton of‘EHiJ‘Ede

e

Government pursuant to the copy

October 1988.
Abstract (continued)
Appendix D: common program source
Appendix E: ctimer program source
Appendix F: declare program source
Appendix G: equivalence program source
Appendix H: etime program source
Appendix I: initial program source
Appendix J: namelist program source
Appendix K: network program soucce
Appendix L: structure program source
Appendix M: usage program source
Appendix N: EXOSIM 2.0 (End-to-end)
UNCLASSIFIED

Secutity Classification of this page

(1)

(2)

DISCLAIMER

DISCLAIMER STATEMENT - The views, opinions, and/or findings
contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy, or
decision, unless so designated by other official documeaiation.

DISTRIBUTION CONTROL

DISTRIBUTION STATEMENT - Approved for public release;
distribution is unlimited.

This material may be reproduced by or for the U.S. Government
pursuant to the copyright license under the clause at DFARS 252.227
- 7013, October 1988.

ANNUAL REPORT

VOLUME 1
PART 1

TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATORY

September 27, 1991

Authors

Thomas R. Collins and Stephen R. Wachtel

COMPUTER ENGINEERING RESEARCH LABORATORY
Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

Eugene L. Sanders Cecil O. Alford
USASDC Georgia Tech
Contract Monitor Project Director

Copyright © 1991
Georgia Tech Research Corporation
Centennial Research Building

Atlanta, Georgia 30332

TABLE OF CONTENTS

PART 1
1. Introduction revessunseneaes 1
L1, ODJECHVES ...ovuverrerreenteienitenteresreeeeeteset et saesesesat et s s e r e s atasae ot cenee s hesassensetnesraeassesaeeassensensaans 1
1.1.1. GN&C Test and Evaluation -- EXOSIM......ccoociiiiiiiiiiiiiiinninininnree e, 3
1.1.2. Education and Technical SUPPOTLcccovviimiiiniiiiiniiniee e 4
1.2. Schedules and milestones..........cccecveeevinvenininnieens ettt areeeateeeateeeaeteae e ee et s b s e aenae s snns s eans 5
2. Hardware and Facilities 9
2.1. Parallel Function ProCesSSOr (PEP)veririiiiiiiiiiiieiieieecneiniuiieeisineseneesssesssesesssasseeeneneaaenens S
2.1.1. Physical DeSCIHPUOM.....coutieierierieitieticiientt et re e b et e e e 10
2.1.2. INEEE 310 HOSE..... ettt ettt s bt e e s e e s s sesaesensssaae s erbe e nb s e e sane e ansenes 12
2.1.3. SUN 3861 HOSE ..ottt sttt ettt s b e s at s ettt 12
2.2. Seeker Scene EMUIALOT (SSE).....oooiieiiiieiieeeeereeeieeeeeevrireicreeseserassaiaasesssnnsssoaeseesaeranssaenereenes 12
2.3. Other computer SYSIEMScocoveveverereeennne. e eeer e eeeeeeteeerereeeaeeeeereeeitresnbessaerseets s neeanee e 13
2.4, SECUTE 1ADOTALOTY ...eeieiiiiiiieeieeeeee ittt eee st tee sttt e e et s s bt s s anas s n b e e e e e s et ne s e aseeaesns 14
3. FPP/FPX Development Tools ..16
31, INETOAUCHON. oottt et e et e e b st e sar e sebetesar et e bae s ot e s e as s e aban e sbassnneas 16
3.2. FPP/FPX object module 10aderccoviiniiiiiiiii s 16
3.3. FPP/FPX program downlOader.........ccccooviiiiiiiiiiiiiiiiieen et 17
4. Software Development TOOIScocirveiniriisiicrinssninsnnsricsiinnnisssncsssnssssssssessssnssasssasssassssensssanosasasses 18
T 3 R {114 00 o T (o] 4T DO OO OO O TSSOSO 13
4.2, Sequential programming tOOISottt e sab e st 18
4.2.1. INITIAL PrOZIAM ..coiiiiiiiiiiiiiiiieice ettt st srb e seae s st senar s ssssas s ane e st s e saaes s eaaae e 18
4.2.2. DECLARE PrOZIamM .cocoiiiiiiiiiiiii it ettt iiaaaran e 21
4.2.3. STRUCTURE PrOZram ..ottt 2

4.2.4, CTIMER PrOZIAITE ..coiiiiiiiiiiiii ittt et ce et sttt e semeenerias s b e nra e e e s e eabs e eanas 27

4.3. Paralle]l programming LGO0IS ...c.ccovvriiiiiiiiiiin et e et e eeer i ——————aaaaaa oo 31
4.3. 1. NETWORK PIOZIAIML......0eiiiiiriiieiiieeitteeestaesireeaseesaeseserasesassnsesesssseesaaseenannreessseeaensnnesiin 31
4.3.2. USAGE PIOBIAM ...uiiiiiii ittt ettt ee e re e st eesate e sereeentaessanaesemreessesbeeesssissnns 37
4.3.3. ETIMER PrOZIAIM .coooiiiiiiiiiiiii ittt cmee et e e saas s sessmaae s s e abrae e 41

4.4. SpecCial PUTPOSE LOOIS.......iii ittt s ae e s sr b e e sebs e e enrnne s 45
44,1, NAMELIST PIOZIAM ...iiiiiiiiiie ittt ettt e e eiiareeseieas s e s tenteesasteeeee s s aneeeeeesraeeeeeaannees e s 45
4.4.2. EQUIVALENCE PIrOSTAM ...coouiiiiiiiieitieecieeeieeeta st see et e eaee et esaranesanr e s 46
4.4.3, COMMON DIOZIAM ...oouuiiieeeriirieeetee ceret iaetesaserasseessesasneaeseesreeaseesansesseennseeaasesressnes 49
4.4.4. PROLOG UBILY ..ottt s e e e e s e bt semnee s e s amee e s e e emees e 51

5. Application Software 63

5.1 EXOSIM.. ittt ettt e e e ee et et e st e sasa e s st e aasnne e e ntaaan s et e e s e eeanbeesesaeeanbneesaneeeenae 63
S.110 EXOSIM 10ttt e et e e e amatcna e s e enne e s b e aan s 65
5.1.2. EXOSIM 2.0ttt et ve et e s e e esss e e et e st e e e e et eeebtsesamaeae st esaesaaeennies 66

R T B T i L A TSSO SOOI R PO OTOPOP PPN 70

T8 B N A L e T OO P ORI PP P ORVPPSOPPRTY 71

5.1.2.3. SSVI9.0. e ce e e et e st e re et e e b et e e et e e naeeeanbeeen 74

5.1.2.4, SSV19.7and SSVIO0.8 L.ttt st s e 76

5.1.2.5, SSV20.8.. ettt ettt et s et e et b e s n e en e saaee 77

S5.1.2.6. SSV20.9.... ettt sttt e et a e s an s 78

5.1.2.7. SSV20.10 ettt ettt e a et e et e e e n e s re e e nen e e e enaesrres 80

S.1.2.8. SSV 2011 et ettt et e e e a e e st e s anee o renenaresene 81

S5.1.2.9. SSV20.12. ettt et et sttt e s et st eas e 85
S.1.2.10. SOV 20,13 et e s 88

T D02 B BN § i U U U S SV SO VPRI PRT PSRRI 91

S 2 E 2, SOV 20 d S e e et s e bttt e s e e en e e 94

S 1.2, 13, SOV 20,160ttt e ettt b et e e n et ree et e e nree s 98

S. 1214, SOV 2110 it reeeaa e et e atre et e e e e e r e e aeeeens 102

TS B0 T AN ¥ T OSSOSO PRSPRRRN 103
5.1.2.16. SSV22.19 ettt st e et e e s e st e r e e e e e esaee e 108

L T B 2 N O USSP S USRI 114
6. Appendix A: Environment file format . 117
7. Appendix B: vicld program source tesessssessreesstesissssnsaretintssasssasarranatatasessasasrasranttneras 119
8. Appendix C: loadfpp program SOUICe.......ccecervererrvensas ceereeesssteerersssssasssssssens 135

PART 2

9. Appendix D: COMMON PrOZraIm SOUICEcccccriocsscessssressssssssssesssaesssssssssssmsossssssssssasssssasssassanasias 1
10. Appendix E: ctimer Program SOUPCEcveeeeirecercsnessssssssissssescsssssnssssasassssanassnes 43
11. Appendix F: declare Program SOUICE........cceueevinirricsiscsrcscsrecossssssssssrosssssssssssssosssssssssssasssns 109
12. Appendix G: equivalence program source 169
13. Appendix H: etimer Program SOUICC.....ccocivurserssccssessessscssaesonssasssssssessessssssssesssssasasssssssassmssses 213
14. Appendix I: initial program source 285
15. Appendix J: namelist program source 328
16. Appendix K: network program source 343
17. Appendix L: structure program source....... ..393
18. Appendix M: usage program source ...426
PART 3

19. Appendix N: EXOSIM 2.0 (End-to-end)......c.ceeeereerrenne .1

Figure 1.1:
Figure 1.2:
Figure 3.1:
Figure 3.2;
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4 4:
Figure 4.5:
Figure 4.6;
Figure 4.7:
Figure 4.8:
Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12;
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19;
Figure 4.20:
Figure 4.21:
Figure 4.22;
Figure 4.23:
Figure 4.24:
Figure 4.25:
Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:
Figure 4.30:
Figure 4.31:
Figure 4.32;
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37.
Figure 4.38:
Figure 4.39:

LIST OF FIGURES

Major components Of DETL.......... oottt 2
Task 1 Schedule and MIlCSIONES.coicvrivriiiiiice it 7
Example use of old object module 1oader. ... 16
Example use of new object module 10ader.cccoocoiiiiiiiiiiiniiiiiec e 17
INITIAL COTES. ...ttt e s 19
INITIAL example MakKefile.oooooiiieriiieteie ittt s e e e 20
INITIAL example input (EXAMPLE.F). ..o e 20
INITIAL example 1. output (EXAMPLE.1). ..cooviiiriiiiier et e 21
INITIAL example 2. output (EXAMPLE.2).cccoiiiiiiiieeeeeeeeee et 21
DECLARE example makKefile.cccoovieomiriiiiinieienciieieceee e 23
DECLARE example input (EXAMPLE.F). ...ccocoriiiiiiiiiiinecete e 23
DECLARE example 1. output (EXAMPLE.1)....c.cocoiiiiiiniinieiiniicier e 24
DECLARE example 2. output (EXAMPLE.2)....c.coviiioiiieiiniieiiierieeee et 25
STRUCTURE example MaKefile.cccooiirerniiniieieenieiiieneesee et secesee e 26
STRUCTURE example input (EXAMPLE.F).ccccoooiiiiimiiniiieeeie e 26
STRUCTUREF example output (EXAMPLE.OUT).coooivviiiieniececeee e 27
CTIMER example MaKefile.........cooeeieiiniiiiiiinicceeceee et 28
CTIMER example input (EXAMPLE.F.OLD)......c.ccccccoeviiiiiiiiniiee e 28
CTIMER example output (EXAMPLE.F). ...ccccoiiiiiiiiiiiiiiiiit aceeeniieeeeeee e 29
CTIMER example output (CTIMER.TXT).....ccccoeiiiiiiniiiiineneeeceeeee e 30
CTIMER example output (CTIMER.OUT). ...c.c.coiiiiiiiiiiiniiiieciierrerre e 30
NETWORK example makefile. cooeiiiiiiiiiiiiinccienc e 32
NETWORK example input (BLOCKO.F). .ooooiiiiieer e 32
NETWORK example input (BLOCKT.F). ..o, 33
NETWORK example input (BLOCKZ2.F). ...ccceoiiiiiiiiieeeeeeeesiree et 33
NETWCRK example input (BLOCK3.F). .ocoiiiiiiiiiiece e 34
NETWORK example 1. input (PRIORITY . 1)..cccooiiniviiiiiiiie e 34
NETWORK example 1. output (NETWORK.1). ..ooooiiiiiiiiiiieiee e 34
NETWORK example 2. input (PRIORITY.2) oo 35
NETWORK example 2. output NETWORK.2). ..o, 35
NETWORK limitation 2. eXample.........cccooveioniiiriiiiiie e 36
NETWORK limitation 3. eXample........ccooviiiiiiiiiiiecr e 36
NETWORK 1imitation 4. eXample........ccovveriiiiiiiieiin e 36
USAGE example MaKefile. ..ot 38
USAGE exampie input (BLOCKO.F).coooiiiiiiiiiicie st 38
USAGE example input (BLOCKTLF). ...oooiiiiiiiiiiiee e 39
USAGE example input (BLOCKZ2.F). ..cc.iviiiiiiiiiiiiieiiteiie e 39
USAGE example input (BLOCKZ3.F). ...coccoiiiiiiiiiiiiiiieee e 40
USAGE example output (SUMMARY . TXT). c.cooiiiiiiiiiiiiiii it 40
ETIMER example makefile. ..ottt 42
ETIMER example output (BLOCKO.F). ..cooiiiiiiiiiiee e 42
ETIMER example output (BLOCKT.F). ...ooooiiiiiiiiiici e 43
ETIMER example output (BLOCKZ2.F). ...oooiiiiiii e 43

Figure 4.40:
Figure 4.41:
Figure 4.42:
Figure 4.43:
Figure 4.44:
Figure 4.45:
Figure 4.46:
Figure 447
Figure 4.48:
Figure 4.49:
Figure 4.50:
Figure 4.51:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figure 5.28:

ETIMER example outpul (BLOCK 3 F). e 44
ETIMER example output (ETIMER.TXT). e 44
ETIMER example output (ETIMER.QUT). ...ooiiiiiiiiiii e 45
NAMELIST example MaKefile. ..ot 46
NAMELIST example input (EXAMPLE. TXT). ..o 46
NAMELIST examgle output (EXAMPLE.OUT). ...cooooiiiiiiiicci e 46
EQUIVALENCE example makefile. oo 47
EQUIVALENCE example input (EXAMPLEF).oooiiiiie 48
EQUIVALENCE example output (EXAMPLE.OUT). ..o 49
COMMON example MoKEIE. ..o 50
COMMON example input (EXAMPLE.F). .o e 50
COMMON example outpul (EXAMPLE.QUT).....ooovoiiiiiieeeeeeee e 51
Evolution Of EXOSIM ..ottt ettt e st et 64
Process of porting Parallel EXOSIM 1.0 to a PFP with FPP boards...................o. 66
General partitioning strategy for EXOSIM 2.0 ... 69
3-partition version of EXOSIM 2.0 ..o 71
S-partition version 0f EXOSIM 2.0 ..o 73
6-partition version of EXOSIM 2.0ooiiiiiiiii e 75
8-partition version of EXOSIM 2.0 ..o 77
G-partition version Of EXOSIM 2.0 ... 78
Timing of 10-partition version of EXOSIM 2.0, ..o 79
10-partition version Of EXOSIM 2.0 ..o 81
11-partition version Of EXOSIM 2.0 ..o 83
Timing of 11-partiton version of EXOSIM 2.0cocooriiiiiiiier e 84
12-partition version Of EXOSIM 2.0 ..o et 86
Timing ol 12-partition version of EXOSIM 2.0....cocoiiii e 87
13-partition version Of EXOSIM 2.0 ..ot e 89
Timing of 13-partition version of EXOSIM 2.0.....cccoiiiiiiii e 90
14-partition version Of EXOSIM 2.0ooiiiiiiieee e 92
Timing of 14-partition version of EXOSIM 2.0......cccooiiiiii e 93
Timing of 14-partition version of EXOSIM 2.0 ..o 95
Tuning of 15-partition version of EXOSIM 2.0......cccciiiiiiiiiiiiii e 96
15-partition version Of EXOSIM 2.0 ..o S UUPPPRO 97
16-partition version Of EXOSIM 2.0 ..o 99
Timing of 15-partition version of EXCSIM 2.0 .o 100
Timing of 16-partition version of EXOSIM 2.0o 101
17-partition version Of EXOSIM 2.0 ..o 105
18-partition version Of EXOSIM 2.0 ..o .. 107
19-partition version Of EXOSIM 2.0 ..o 109
Timing of 19-partition version of EXOSIM 2.0 .. 110

1. Introduction

The Dugital Emulation Technology Laboratory (formerly referred to as the KEW Digital
Emulation Laboratory) is a principal unit within the Computer Engincering Research Laboratorv
(CERL) at Georgia Tech. This report addresses the objectives, requirements, and schedule of the
Digital Emulation Technology Laboratory (DETL), relative to contract number DASG60-89-C-
0142. This contract concerns primarily activity associated with the effort to develop an
integrated hardware and software environment for end-to-end cmulations of exoatmospheric
interceptors such as EXOSIM. This includes the Georgia Tech Parallel Function Processor
(PFP; system software for the PFP (utilities and parallel programming tools), and application
software (EXOSIM). Some discussion of interfaces to specialized extemal hardware like the
Seeker Scene Emulator (SSE) will also be included.

1.1. Objectives

Within DETL, there are two main hardware systems: the Parallel Function Processor (PFP) and
the Secker Scene Emulator (SSE). Each of these systems is a complex parallel processor,
designed to functon together as an cmulation facility for kinetic encrgy weapons systems.
Software development is also an active area of rescarch, both at the system level (compilers,
loaders, graphics development) and at the application level (simulation and emulation studies).

The principal objectives of DETL are as follows:

- Provide facilities for 6-DOF KEW cmulation

- Provide real-time capability in excess of 2000 Hz

- Provide real-time emulation of IR FPA scckers

- Test and verify GN&C software and hardware systems

- Educate new PFP users and provide tcchnical support.

2 Annual Report: L. gital Emulation Technology Laboratory Volume 1, Part 1

DIGITAL EMULATION TECHNOLOGY LABORATORY ... ccccn.

Figure 1.1: Major components of DETL

The major components used in mecting these objectives include the PFP, SSE, and associated
conventional ccmputers for basic support functions. Not all of these components are required for
every task. For example, much of the or,ving rescarch consists of running simulations
(sometimes real-time, sometimes not) on the PFP, with no attached systems. This limited mode

1. Introduction 3

of operation is capable of verifying missile simulation models and control laws, as well as many
types of signal processing.

To provide realistic imagery in real-time, however, the Seeker Scene Emulator is required. This
system generates image data as though it were coming directly off of the elements of a focal-
plane array, with the scene information determined by the relative location of the simulated
missile system to the targets and decoys. Additional detail on the Seeke. Sccne Emulator may
be found in Volume 2 of this annual report.

Acuual flight hardware may be tested within this system, as indicated by Figure 1.1. Most of the
items contained in the lower half of this figure represent VLSI components that may be tested
within DETL. The GT-DP blocks, for example, are chips for guidance and control processing
that are being developed at Georgia Tech. Similarly, the GT-SP block contains signal-processing
components developed at Georgia Tech. By equipping the hardware with appropriate interfaces
to the PFP, the simulated functions of the GN&C Processor can migrate from the PFP to the
actual hardware. These interfaces are also shown in the figure. Additional detail on the VLSI
components themselves may be found in Volume 4 of this annual report.

1.1.1. GN&C Test and Evaluation -- EXQSIM

The principle objective of DETL has always been to provide a facility in which guidance,
navigation, and control algorithms can be run at high speeds in order to assess their performance.
Recently, this has been served by implementing EXOSIM in various forms. EXOSIM is a
simulation of a representative exoatmospheric interceptor (ERIS baseline) which has evolved
from several earlier simulations, including KWEST and KEERIS. Unlike KWEST, which was
written in a combination of ACSL and FORTRAN, EXOSIM is written entirely in FORTRAN.
Unfortunately, the programming model for EXOSIM was not especially suited for a parallel
implementation, since it utilized an event-driven structure. This technique is often used to
enhance the performance of discrete-event simulations on single-processor systems, since it
eliminates the need to model small increments of time in which essentially nothing changes. For
a continuous system, however, there is little advantage in using an event-driven structure.

One of the subcontractors for this work (Dynetics) modified Version 1.0 of EXOSIM, changing
it from an event-driven structure to a time-driven structure. At the same time, it was made into
an unclassified version by replacing the data set and changing two routines. This modified
version of EXOSIM was first implemented at DETL and was described in the annual report for
this task in FY 1990. Briefly, we generated a set of guidelines for partitioning FORTRAN code
on the PFP and described a means of testing the partitions on a single-processor systcm.
Following these guidelines, Dynetics first produced a first-stage boost version of the modificd
EXOSIM, partitioned for four processors. This program is called BOOST1. They then produced
a first/second-stage boost version (BOOST?2), partitioned for five processors. Both of these
programs ran correctly on the PFP, requiring only a simple procedure of splitting up the main
program along documented partitions and adding the appropriate communication instructions
(which is an automated process).

4 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

BOOST?2 was subsequently altered at DETL in order to extract more parallelism, thus using more
processors. Since the time of the last annual report, a version has been developed which runs on
27 processors at a speed or 4 times real time (slower than real time by that factor). This version
used the 80386-based processors, which are not the fastest processors available for the PFP.
Then, this version was ported to the newer Sun-hosted PFP, populated with a mix of 80386
processors and the AMD 29325/7-based FPP and FPX processor boards. This allowed the
simulation to run in real time.

The greatest thrust of the development cffort during the past year, however, has been to analyze,
debug, and partition the newer version 2.0 of EXOSIM, running end-to-end (boost, midcourse,
and terminal modes of flight). This is described in detail within this report. Briefly, the basic
sleps were:

1. Convert the event-driven structure to a time-driven structure more suitable
for the PFP,

2. Debug this single-processor version to produce a portable version, removing
VAX dependencies and uninitialized variables in the process,

3. Partition the code in stages, improving execution time, using 80386-based

processors,

Minimize double-precisicn requircments, and

Port some partitions to the FPP and FPX boards 1o achieve real-time

operation,

v e

At this tdme, we are occupied with step 5, writing new compilers and iools to more fully utilize
the available processors. In the interest of demonstrating real-time performance of EXOSIM 2.0,
a boost-phase-only version of the partitioned program was spun off as a side effort and is now
running in real time. This complements an earlier midcourse/terminal-phase-only version which
was demonstrated in July 1991, running real-time in conjunction with the SSE and described in
volume 3 of this annual report. Taken together, these two versions (boost-phase-only and
midcourse/terminal-only) do not constitute an end-to-end simulation, since the
midcourse/terminal version only runs with preset data values.

1.1.2. Education and Technical Support

The Digital Emulation Technology Laboratory first presented a class on the programming and
operation of the PFP in December 1989. During the past year, a PFP has been delivered to the
KDEC facility at USASDC in Huntsville, Alabama. To suppon this facility, another two-day
PFP class was presented at KDEC, using their PFP, in April 1991. As before, the students were
emplo ees of USASDC and its contractors. The class included material on parallel processing
fundamentals, the PFP model of parallelism, PFP hardware, the host operating system, and
typical applications. Approximately three-fourths of the time was used for hands-on experience
with the PFP, a 50% increase from our first class, based on the opinions of our carlier
participants.

To address the needs and concemns of potentio! PFP users at KDEC, DETL provided a technical
briefing on the PFP on July 26, 1991. This bricfing was given to a bluc-ribbon committee

1. Introduction 5

reporting (0 Dr. E. L. Wilkinson through Doyce Satterfield, covered the PFP hardware, system
software, basic operation, software utilities, and application areas.

We also organized a technical committee, the Paraliel Simulation Technology Working Group.
This group includes members from SDC-affiliated companies who can meet to discuss
simulation techniques, general parallel programming topics, PFP issues, and ongoing SDC
simulation work. The first meeting took place on August 15, 1990. The presentation topics at
that meeting are listed below.

Unique PFP Programming Considerations

Automatic crossbar/sequencer code generation (S. Wachtel -- Georgia Tech)
EXOSEEK Seeker Simulation (R. Stone -- BDM)

Parallel Simulation Techniques

Carriers, Threads, and Event Multi-Tasking Capabilities (W. Tan - Georgia
Tech)

Extraction of lower-level parallelism in EXOSIM (C. O. Alford/P. Bingham --
Georgia Tech)

Parallel Simulation Applications

Vehicle simulation requirements for scene generation (K. Smith -- Sentar)

Implementation status of EXOSIM on the PFP (T. Collins -- Georgia Tech)

Signal-processing Algorithms (H. Gatzke -- TBE)

1.2. Schedules and milestones

As of August 1991, there are four 32-processor PFP systems available. Two of these are
available for classified operation. One of these two secure machines, hosted by the Intel RMX-
based host, is populated with mostly 80386-based processors, but also has one FPP available and
several 286-based processors to fill up the slots. The other secure system is populated with up to
six FPX processors, up to four 80386-based processors, and up to 23 FPP processors. The other
two systems are the 286-based machine located at KDEC and the FPP-based machine for internal
development of FPP/Sun host software. Not included is a prototype Multibus II PFP.

The unsecured PFPs (at DETL and KDEC) both include the basic packaging and power supplies
to support expansion to 64-processor capability. The 386-based PFP may eventually be paired
with the Multibus I PFP to produce a 64-processor hybrid system.

The major milestones completed over the period of this report are as follows:

6 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part |

- Integration of additional 386/12 processors into PFP, making some available for the
mostly-FPP/FPX PFP (io handle memory-intensive applications),

- Development of utility software on the RMX host,
- Development of new system sofiware, such as loaders,
- Upgrades to the Floating-Point Processor (FPP) Compiler,

- Development of parallel-processing support utilities, including one that analyzes
program structure, one that assists in automated timing charts, and one which checks and
generates communication code,

- Enhancement of librares of communication procedures for processor-processor and
processor-host interaction, providing uniform interfaces across several languages (C, Fortran,
Pascal, and PL/M),

- Improved layout of a new "piggyback" board to provide crossbar communcation
capability to the 386/12 boards through their iSBX interfaces,

- Presentation of offsite education in PFP programming,
- Extensive development of various versions of EXOSIM 1.0 and 2.0, and

- Demonstration of the 256-processor Seeker Scene Emulator generating frames in real
time and in closed-loop with EXOSIM 2.0.

The most significant causes for delays during the past year have been
- Inadequate compilers for the FPP and FPX boards,

- Insufficient memory on the FPP and FPX boards, and

- Lack of programming support personnel.

During the coming year, the highest priority will be placed on the optimal use of DETL
technologies in simulation applications such as EXOSIM. The schedule for this effort is shown
in Figure 1.2. The implementation dates for midcourse and end-to-end EXOSIM are generally
consistent with earlier estimates. Dates for LEAP and GBI implementation are estimates and
assume that these simulations are available to be ported to the PFP.

$OIpNIS DUlAWRIRBY ¥ Y

SETTETEPINSY.

L LLLLLLLL

ISV T OIIIITIITIIITI I IINS

LLLlLd

8403U88 K0 spURQ BIANNW jO uoeibelu ¢y

d4d uo uoneyeisy Z'y
eqejieay |’y
4008180
$8IpNIS NeWeRd G'E
vQayv ol UeAuo) ¥'E
ddd U0 Wwewsedw| ¢'c
luewdojeaep J0ssedaxd-ebuis 2'¢
9Iqe|IBAR UO(918A Areupugeid | '€
009 Y3 E
Buiise) 209360019 LVHY 22
©18/0Wod Ueld 156 103%6800id (VMY |2
sLeidisa) 2
SOIPS DLBLBRed ¢ 2L
VQVY Ol UBAUOD ¥ 2L
8dd4 01 UOd ¥ €L
D O01UBAUOD EETE
vosideid e1buis 01 LeAVoD Z'E 2|
uouived L 'C2 L
dad Yo luewerdw) €21
NVHLHOA eqesn 01 Ueavod 2'2'4
©|QERAR UCISIOA JOPRIIUCIQNS |2}
0ZUOIBOAZ'L
d3d U0 UOISien SNRUAQ 221’1
ITR(IeAR UOISIOA SBUAQ 172 1}

1800q 80e1s-puodes Z'1 4

661

yé6i

ceei

———
2 ddd vo vorsies sBuAQ 21171 '|
@ BIqe|IEAR UOISIBA SINOUAQ 1'1°L L
: ot 1900q ofels-14 111
Aﬁ - 0'1 UOIBA § 'L
_ L e WISOX3 |
SYITFTANYNITONOSYTTAYNIrONOSYIITANYRITONOSY I FTAHNYNIITONOSY IrANYANIFPONOSY FIANYNST ureN
1661 [T

S66L

8INpPeyos 113

Q 21 enbiy

8 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

The remainder of this report will describe the hardware and software associated with the Digital
Emulation Technology Laboratory, with an emphasis on the work completed during the previous
contract year. The hardware information includes upclated status of the PFP units, new
processors, host enhancements, and communication interfaces. A brief description is also given
for the physical facility itself and some auxiliary computers contained within. The software
information includes new versions of utilities which support the GT-FPP (Floating-Point
Processor) and the GT-XSD and GT-SEQ (crossbar and sequencer boards), as well as updates to
application software (EXOSIM and LEAP).

Based on comments and suggestions from outside users and members of the blue-ribbon panel
mentioned above, DETL feels a need to address requirements for dynamic, on-demand
communication between processors, a feature not supported on the current PFP. While this
limitation can be worked around in the typical PFP applications of the past, including EXOSIM
and several foreseeable interceptor simulations, it will become more serious in applicatdons such
as battle-management. Although Georgia Tech’'s concepts for an advanced PFP (the APFP),
address these limitations, it is also desirable to enhance existing systems, including the PrP at
KDEC. Consequently, we have a conceptual design for a new crossbar which will eliminate the
need for a sequencer, along with all of its limitations.

Although we have already developed a complete set of software tools that meet our own research
requirements, there is a need for general programming aids, particularly for users not accustomed
to specialized computers. This also became clear based upon interaction with KDEC users and
the blue-ribbon panel. Several of the tools which DETL has used intemally will be developed
further and released to outside users.

2. Hardware and Facilities 9

2. Hardware and Facilities

This section begins with a description of the Parallel Function Processor, including recent
changes, and then discusses the current configuration of the two alternative host computers.
Most of the detail, though, is devoted to recent improvements and current board status.

2.1. Parallel Furction Processor (PFP)

The Special-Purpose Operational Computing Kernel, or SPOCK, evolved from a Ph.D.
dissertation (by James O. Hamblen) on a new architecture designed to solve ballistic missile
simulations. Before digital computers came into prominence, some of these simulations had
been performed quite effectively on analog computers, in which basic circuit elements are
interconnected by a patch panel to create an approximation to the real system.

Digital computers provided the potential of much higher accuracy in the simulations, but at the
cost of speed: most real systems could not be simulated nearly as fast as they really run,
generally referred to as reaf time. In 1978, Georgia Tech's SPOCK 1 addressed the problem by
showing how up to 6 processors could effectively perform such a simulation.

Building on the previous experience, in 1982 a prototype of a 32-processor system, SPOCK 11,
demonstrated greater capability with more-powerful processors. In addition to the digital
processors, SPOCK II also had analog input and output channels. This provided the important
capability of interfacing seamlessly with the extenal environment, for real-time control of analog
systems.

Since that time we have developed SPOCK II into the Paralle! Function Processor (PFP), a fully-
operational testbed for simulation and emulation problems from both military and nonmilitary
applications. The architecture never stagnates -- the original Intel 8086/8087 processors were
each roughly as powerful as an IBM PC, but now they can be replaced with any of four newer
processors. One is based on the Intel 80286/80287 and performs as well as an IBM AT. Another
is based on the Intel 80386/80387, and the last two are based on the AMD 29325 and 29327
processors and are about 25-100 times faster for the floating-point calculations which it is
designed to perform. Integration of 80486-based processors is planned for the coming year,
which should provide near-FPP/FPX spced, with significantly more memory and extensive
software support.

All of the processors, or Parallel Processing Elements (PPEs), support the 16-by-16 crossbar
interconnection, allowing each to communicate directly with the others. Multiple conversations
may takc place simultaneously on the crossbar, and it is also possible for a single processor to
broadcast data to every other .rocessor in a single instruction cycle. Since the crossbar has been
reduced in size from a full 19-inch rack down to a cluster of eight circuit boards, it is now
possible to have the power of 32 minicomputers in two racks, and still have all of the processors
work together efficiently.

10 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

Each of the current processors has two interfaces: one to the crossbar for data communication
while running, and one to a shared bus that is used for loading programs and data from a central
host. Virtually any imaginable processor can be fitted to a processor slot in the PFP. In fact, if
an image-processing problem was part of a larger simulation problem, it could be assigned to an
array processor within the PFP system. Co-processing boards have been developed at Georgia
Tech that evaluate complex floating-point functions in a fraction of the time used by the best
supercomputers on the market today. These co-processing boards "piggy-back” on the
processors described earlier.

Similarly, a complete minicomputer system with an attached 3-D graphics workstation has been
connected to one of the PFP processors, thus effectively becoming a part of the multiprocessor
system. This allows sophisticated graphics to be generated in real time as the simulations
proceed.

These enhancements demonstrate that other architectures can be applied as needed within the
enveloping PFP architecture. But there is also a way to increase the PFP's capability at a higher
level. Since the number of processing nodes in a crossbar is practically limited because of the
large number of switches required, the PFP needs a way to grow beyond its crossbar. A fully-
operational interconnection board has been developed which occupies a processor node in a
single PFP system. When a processor communicates with this interconnection board, the data is
passed out over an external channel to an identical board in another complete PFP. By adding
more interconnections, multiple PFPs may form a higher level of parallel processing. A triangle
of three PFPs still allows each processor to communicate with any other processor with no
intervening processors, although there may be some waiting for an available channel.

The standard configuration of the PFP at this time is a 64-processor system (2 crossbars),
packaged in a three-rack system, including the host. A single-crossbar system can be packaged
in two smaller racks, if desired. Both the Intel RMX-based 310 host and the Sun Unix-based
386i host are currently supported.

2.1.1. Physical Description

The full 64-node PFP, complete with the host computer, occupies three 19 inch wide by 32 inch
deep by 75 inch high equipment racks. Each cuter rack contains 32 PPE slots. The center rack
contains the two crossbars, two sequencers, the host computer and two crossbar status displays.

All processors, as well as the sequencer, conform to Intel's Multibus I specification. They are
connected to the host througii & custom Multibus repeater system, which is used by the host to
communicate with each PPE. Each 16 by 16 crossbar switch is made from four 8 by 8 switch
boards connected through a custom backplane. Each 8 by 8 switch board is built to a 15.75 inch
by 14.44 inch Eurocard standard. Both crossbars are housed in one 19 inch wide card cage.

Each of the 64 nodes in the system is occupied by a PPE. A PPE can be one of five differcnt
boards; an array interconnect, an Intel 80286-based commercially available processor, an Intel
80386-based ccmmercially available processor, a Georgia Tech Floating-Point Processor, or a

2. Hardware and Facilities 11

multi-channel analog I/O interface. Other boards will be developed as necessary to enhance the
capability of the PFP.

The Georgia Tech Floating Point Processor (GT-FPP/3) is an 8 MFLOP computing engine based
on the AMD 29325 floating point chip. Currently, the board is programmed using a subset of
Pascal orin C. Ada and FORTRAN are supported by Ada-to-C and FORTRAN-to-C converter
programs. An enhanced version, the GT-FPX board, is based on the AMD 29327 and supports
double precision arithmetic along with a wider range of integer and control operations.

The iSBC286/12 processor is commercially built by the Intel corporation. It is a cheaper, lower
performance board than the GT-FPP/3. The board is useful in applications that require large
amounts of memory such as table look ups. Presently, most of the programming is done in
FORTRAN and C , although Pascal, PL/M, and other Intel standard utilities are available. The
crossbar interface to this board is built to fit the Intel standard iSBX port. Supporting other
Multibus I processors that have this port only requires changes in the board's firnware. The
iSBC386/12 processor is an 80386-based equivalent of the iSBC286/12 board, with
approximately a 3-4 times speed improvement for typical PFP applications. Several iSBC
486/12 boards are on order. These are 80486-based replacements for the 80286 and 80386-based
boards, and should be roughly as fast as the FPP/FPX processor boards, while supporting more
onboard memory and more compilers.

The analog input/cutpui board consists of four analog to digital input channels and four digital to
analog output channels. The output portion consists of 4 separate digital to analog converters.
The input portion consists of 4 sample and hold circuits multiplexed through one analog to
digital converter. Any combination of inputs and outputs are available for use. All digital
conversions have 12 significant bits.

The array interconnect board (GT-ARI/1) is used as a direct interconnect between crossbars. Each
array interconnect may send and receive 16 bit words simultaneously from other array
interconnects. The use of array interconnects affects only the crossbar code and is otherwise
transparent to the individual processors.

All programs are written and compiled on the host computer then downloaded to the processors.
Currently, each problem is analyzed by a programmer and split into parts which are then
compiled for individual processors. A separate compiler is used to load the crossbar and
sequencer with the instructions for processor communication.

The major components of a full system are:

1. The host machine. (This mav be an Intel 310 or Sun 386i)

2. An MDB Systems Data Shuttle 2000 removable disk drive unit.
3. Up to 64 processors and array interconnects, in any combination.

4. Up to two sequencers.

12 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5. Upto two full 16 by 16 GT-XB/2 crossbar switches.
6. Upto two GT-XSD/2 status display units.

7. Up to two equipment racks containing Multibus I card cages, sequencer cabling, and power
distribution.

8. One equipment rack containing the crossbar, sequencers, crossbar status displays, and
appropriate power distribution.

2.1.2. Intel 310 Host

The Intel 310 host is based on a 12 Mhz 80286 processor (actually the same 286/12 board
available for use in the PFP) and runs the Intel iRMX operating system. We have also replaced
the host 286/12 board with a 386/12 board, in much the same way that we have replaced the PFP
286/12 processors with 386/12 processors. This configuration can execute computationally-
intensive applications (including compilation and linking) about four times faster that the 286-
based host. The host is tied to the PFP through a custom set of repeater boards developed here at
Georgia Tech. A master repeater board is located within the host chassis, and slave repeater
boards are located within the racks of processors. The machine supports all standard Intel
languages running under the iRMX operating system, including C, Pascal, PLM, and
FORTRAN. Programs written in any of these languages may be compiled and linked on the host
and then downloaded to processor boards (iSBC 286/12s or iSBC 386/12s) in the PFP for
execution. In addition, the host supports a compiler that implements a subset of Pascal for use
with the GT-FPP/3 custom floating-point processor.

2.1.3. Sun 386i Host

The Sun 386i host is based on a 25 Mhz 80386 processor and runs the Unix operating system. It
is the basis of an eventual replacement for the Intel 310, leading to higher performance and a
more user-friendly environment. The hardware interface to the PFP is similar to that of the Intel
310 host, except that the master repeater board is located within a dedicated Multibus rack,
connected to the Sun host by a PC-to-Multibus link. (The Sun 386i utilizes the PC/AT bus.) A
C compiler has been written to support the GT-FPP/3 processor, and other languages w 1l b
supported via translators (Ada-to-C and FORTRAN-to-C). All low-level drivers interfacing uie
Sun to the PFP are complete and several Fortran, Ada, and C programs have been loaded and
tested, including versions of EXOSIM. The Sun also supports standard Intel-supplied languages
for programming the iSBC 386/12 processors.

2.2. Seeker Scene Emulator (SSE)

In addition to developing crossbar machines like the PFP, DETL is actively studying other
architectures, since thcre is no such thing as a completely general-purpose parallel computer.
One of the most promising is a group of architectures built around a new microprocessor chip,
the Inmos Transputer. Unlike previous microprocessors, the Transputer was specifically
designed to be interconnected with others of its kind. Since a single chip includes the processor,

2. Hardware and Facilities 13

memory, and communication ports, it is possible to build a parallel machine with little more than
a group of Transputers.

Each Transputer has four links that can be uscd to tie thein together, allowing a wide range of
architectures to be built. One of our principal applications for the Transputer is a Seeker Scene
Emulator, a machine that models what an imaging scnsor on a missile would see during a
mission. Most simulations of such systems tend to simplify the infrared sensing process in order
to minimize computations, but the Georgia Tech Secker Scene Emulator will provide a signal
which can be displayed on a screen and will look virtually identical to a real view of an incoming
threat.

This seeker output can then be used by a simulation running on the PFP, or by an actual guidance
and control processor, like the one being developed for our VLSI devices. The Seeker Scene
Emulator will use 256 Transputers, so when connected to PFP in a simulation, it will be another
example of a specialized parallel processor within the more general crossbar architecture of PFP.

Under direction from the U. S. Army Strategic Defense Command, the Computer Engineering
and Research Laboratory at the Georgia Institute of Technology and BDM Corporation are
developing a real-time Focal Plane Array Seeker Scene Emulator. This unit will enhance
Georgia Tech's capabilities in KEW system testing and performance demonstration.

The FPA Secker Scene Emulator combines advanced hardware developed at Georgia Tech with a
BDM-generated database to produce signals based upon target radiometric information, seeker
optical characterization, FPA detector characterization, and simulated background environments.
Using real-time, positional updates, typically from the Georgia Tech Parallel Function Processor,
the Seeker Scene Emulator can combine elements of the pre-computed database to form an image
that is positionally and radiometrically correct.

In conjunction with development of the¢ FPA Seccker Scene Emulator, research into signal
processing of secker data is underway. The Secker Scene Emulator provides a platform for the
expedient testing of algorithms and implementations. Currently, a parallel-processing network is
being used to test various signal processing "building blocks."”

Detailed information about the Seeker Scene Emulator may be found in Volume 2 of this annual
report.

2.3. Other computer systems

Originally, a Digital Equipment Corporation MicroVAX II was used as the primary file server
for the Seeker Scene Emulator, but this function has now been transferred to the Sun 3861 which
also serves as one of the PFP host machines. The MicroVAX can still be used to transfer
programs and data to and from other contractors. Programs written for VAXes and other off-site
computers may be loaded onto this MicroVAX via its nine-track tape drive. From there, files
may be transferred to the PFP hosts (Intcl 310s or Sun 386i's) or to other computer systems.
Also, additional simulation support is available on this system through the MatrixX and ACSL
languages. Both languages provide an environment for the simulation of discrete and

14 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

continuous-time systems, including a choice of integration methods. MatnixX also has a
graphical user interface for entering simulation specifics. This MicroVAX is approved for
classified data processing. This system is equipped with a nine-track tape system, the standard
TK50 tape unit, an Ethemet network interface, and a Caplin Cybemetics Corporation QTO
Transputer Interface Module.

Another MicroVAX is dedicated to a Chromatics 3-D graphics workstation. This combination of
machines may be directly connected to a PFP processor in order to display complex three-
dimensional graphics during simulations. Both of these machines are approved for classified
data processing. In order to improve graphics quality and to support standard computing
platforms, a Silicon Graphics Indigo workstation is currently in the purchasing plans. This
machine would replace the Chromatics system for high-quality graphics output, while also
supporting the graphics requirements of the SSE.

A secure Ultrix machine was required to run the PFP programming tools that have been
developed under Ultrix. Consequently, the Chromatics MicroVAX can now be brought up as a
secure Ultrix machine. Ultrix V4.0 has been installed onto removable disk canisters ready for
use whenever we can get secure code and data to the machine. This machine has also been
useful to shake out the portability problems of the code, using both the UNIX FORTRAN
compiler and the VMS FORTRAN compiler.

It was also necessary to build a secure PC disk for the an IBM-compatible PC, using a 20MB
Bemoulli disk. The system has been used to transfer secure data via the network from the
iIRMXII host or VAX VMS host (via OpenNET) to the PC or the Ultrix machine (via TCP/IP).

2.4, Secure laboratory

The principal elements of the Digital Emulation Technology Laboratory are housed in a
laboratory on the third floor of the Centennial Rescarch Building which has been approved for
classified operation up to the secret level. Within this facility are most of the machines which
have been described, including:

the 80386/80286-based PFP (32-processor), with FPP capability,
- the FPP/FPX/80386-based PFP (32-processor),

- two RMX-based PFP host machines (Intel 310s),

- one Unix-based PFP host machine (Sun 386i),

- the Seeker Scene Emulator,

- the MicroVAX with 9-track and TKS0 tape drives,

- the MicroVAX/Chromatics system, and

- an IBM-compatitble PC serving as the SSE host.

“

2. Hardware and Facilities 15

Each of these machines is approved for classified processing. The two PFP host machines are
functionally identical, with one always available as a backup. A safe is also provided for storage
of classified documents and magnetic media. All classified hurd disks are removable, and the
classified operating disks are stored in the safe.

16 Annual Report: Digital Emulation Technology Laboratory Volume 1 Part |

3. FPP/FPX Development Tools
3.1. Introduction

This section covers the latest changes and additions which have been made to the FPP/FPX
processor development tools.

3.2. FPP/FPX object niodule loader

As parnt of our effect to improve the software support for the FPP/FPX processors, the old
FPP/FPX object module loader has been replaced by a new object module loader. Refer to
Appendix B for the complete program source.

The old object module loader took as input a list of relocatable FPP or FPX object modules and
constructed a corresponding absolute FPP or FPX load module. Each object module was
assumed to be required and so was relocated to an absolute address according to the order in
which they appeared on the input list. It was limited to 50 object modules maximum.

.
FPP example:

vicld \
/vol/pfp/lib/fppr d.fppo \
../library_1l/subr. tine_l.fppo \
../‘Lbrary 1/ ..
../library_ “1/subroutine _n.fppo \
Lo/ brary n/subroutine 1.fppo \
../library_ n/ ..
../library n/subrou'xwe n.fppo \
/vo /pfp/lib/fpptail. fppo

FPX examp.e:
viclad \
/vol/p p/lib/fpphead. fpxo \
library I/subroutire_1l.fpxo \
../llo'ary 1/ ..
../library_i/subroutine_n.fpxo \

. lxbrary _n/subroutine l.fpxoc
../library n/

./library r/subroutine r.fpxc 1
/vol/p p/lib/fptaili. fpxo

Figure 3.1: Example use of old object module 1oader.

The new object module loader take as input a list of relocatabie FPP or FPX object modules and
constructs a corresponding absolute FPP or FPX load module. But, the new object module
loader will only assume that the first object module is required an that the remaining object
modules should only be included to satisfy a code or data dependency requirement. The required
object modules will then be relocated to an absolute address according to the order in which they
appear on the input list. It is currently limited to 1024 object modules maximum.

3. FPP/FPX Development Tools 17

FPP example:
vicld \
/vol/pfp/lib/fpphead. fppo \
../library 1/*.fppo \

../library_n/*.fppo \
/vol/pfp/lib/fpptail. frpo

FPX example:
vicid \
/vol/pfp/lib/fpphead. fpxo \
../library 1/*.fpxo \

../library n/*.fpxo \
/vol/pfp/lib/fpptail. fpxo

Figure 3.2: Example use of new object module loader.

The new object module loader is also faster than the old object module loader because it reads
each object module once where the old loader read each object module three times.

3.3. FPP/FPX program downloader

The PFP FPP/FPX downloader program takes the output of the FPP/FPX object module loader
program and downloads the code and data into a target FPP or FPX processor. Refer to
Appendix C for the complete program source.

The command line syntax is:

loadfpp <processor|>=<file> [... <processor>=<file>]

where:
<processor;> = target processor name

<file;> = host file name

The FPP/FPX program downloader performs the following steps:
1. Build a bootstrap program for downloading the application program data.
2. Download the bootstrap program.
3. Start the bootstrap program.
4. Send the application: program data to the bootstrap program.
5. Stop the bootstrap program.
6. Download the application program code.
7. Start the application program.

18 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

4. Software Development Tools
4.1. Introduction

The following software development tools consist of a collection of programs developed at the
Georgia Institute of Technology. These tools, which execute under either SUN OS or Ultrix,
were made to assist the PFP user in the design, development and analysis of programs for the
PFP.

4.2. Sequential programming tools

This section will discuss programs designed to assist the PFP user in the design, development
and analysis of sequential programs.

4.2.1. INITIAL program

The purpose of the INITIAL program is to determine if any uninitialized variables exist in a
FORTRAN 77 program. Refer to Appendix I for the complete program source.

The command line syntax is:
initial <input file> <output file> [-conditional=y or n]

where:
<input file> = input file name
<output file> = output file name

The INITIAL program with the option "-conditional=y" determines whether a variable is
uninitialized by assuming the following about the program control flow:

1. that execution proceeds sequentially through a subprogram from top to bottom.

2. when a subprogram call is encountercd, control is passed to that subprogram with the
resulting changes in the formal arguments reflected back through the callers actual arguments.

3. that data and parameter statement assignments always occur.
4. that variable references and assigrments outside conditionals always occur.

5. that variable assignments inside conditionals always occur.

4. Software Development Tools 19

6. that variable references inside conditionals always occur.

The INITIAL programm with the option "-conditional=n" determines whether a variable is
uninitialized by assuming the following about the program control flow:

1. that execution proceeds sequentially through the program from top to bottom.

2. when a subprogram call is encountered, control is passed to that subprogram with the
resulting changes in the formal arguments reflected back through the callers actual arguments.

3. that data and parameter statement assignments always occur.
4. that variable references and assignments outside conditionals always occur.
5. that variable assignments inside conditionals never occur.

6. that variable references inside conditionals always occur.

From these two choices, the option "-conditional=n" implenients the most conservative approach
in determining whether a variable is uninitialized.

R- or {R} Reference without set

S-or {S} Set without reference

CR-or {CR} Conditional Reference without set
CS- or {CS} Conditional Set without reference
RS or {RS} Reference and then Set

SR or {SR} Set and then Reference

CRS or {CRS} Conditional Reference and then Set
CSR or {CSR} Conditional Set and then Reference

Figure 4.1: INITIAL codes.

The following figures will be uscd to demonstrate the INITIAL program.

20 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1
default: example.l example.2
example.l: example.f

initial example.f example.l -conditional=y

example.2: example.f
initial example.f example.2 -conditional=n

Figure 4.2: INITIAL example makefile.

PROGRAM example

DATA a /100./

CALL subl{a, b, ¢, d, e)
f=a+b+c+d+e+g
CALL square(f)

END

SUBROUTIN® subl({a, b, c, 4, e)
IF (a .LE. 10.) THEN
b = 0.
ELSE
b=Db 1
END TF
= 0.
CALL sub2(a, d, e)
END

SUBROUTINE sub2(a, d, e)

IF (a .LE. 5.) THEN
CALL square (d)

END IF

CALL sub3(a, e)

END

SUBROUTINE sub3(a, e)
IF (a .LE. 1) e = O.
END

SUBROUTINE sqguare({z)
z = z**2
END

Figure 4.3: INITIAL example input (EXAMPLE.F).

The following figure contains output produced by the INITIAL program for example 1. The
variables "D" and "G" in subprogram "EXAMPLE" have been spotted by INITIAL as potential
uninitialized variables. The variable "D” has the code "RS" which means that it's being
referenced before it's being set. The variable "G" has the code "R-" which means that it's being
referenced without ever being set. The other lines in the output show each successive

subprogram with its formal arguments and local variables, if any.

4. Software Development Tools 21

EXAMPLE

D RS

G R-

SUB1 A{R}=1,B{SR}=2,C(8}=3,D{RS}=4,E(S$}=5
SUB2 A{R}=1,D{RS}=2,E{S}=3

SUB3 A{R}=1,E{S}=2

SQUARFT 7in<; .1

Figure 4.4: INITIAL example 1. output (EXAMPLE.1).

The following figure contains output produced by the INITIAL program for example 2. The
variables "B”, "D" and "G" in subprogram "EXAMPLE" have been spotted by INITIAL as
potential uninitialized variables. The variables "B" and "D" have the code "CRS" which means
that they are being conditionally referenced before being set. The variable "G" has the code "R-"
which means that it's being referenced without ever being sct. The other lines in the output show
each successive subprogram with its formal arguments and local variables, if any.

EXAMPLE

B CRS

D CRS

G R-

sSUB1 A{R}=1,B{CRS}=2,C{S}=3,D{(CRS}=4,E{S}=5
SUB2 A{R}=1,D{CRS}=2,E{S}=3

SUB3 A{R}=1,E{S}=2

SQUARE Z{RS}=1

Figure 4.5: INITIAL example 2. output (EXAMPLE.2).

Limitations of the INITIAL program:
1. Equivalenced variables are not supported.
2. Common block variables are not supported.

3. If goto statements are used in such a way to violate the above assumptions, then the
results that the INITIAL program produces may not be correct.

4.2.2. DECLARE program

The DECLARE program takes as input a FORTRAN 77 program and produces as output a
complete set of FORTRAN 77 declaration and data statements. Refer to Appendix F for the
complete program source.

22 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

The command line syntax is:
declare <input file> <output file> [-initialize=n or y]

where:
<input file> = input file name
<output file> = output file name

The DECLARE program with the option "-initialize=n" will parse the input FORTRAN 77 and
produce the following output for each subprogram:

1. a subprogram skeleton.

2. then the formal argument declaration statements, if any.

3. then the common block declaration statements, if any.

4. then the variable declaration statements, if any.

The DECLARE program with the option "-initialize=y" will parse the input FORTRAN 77 and
produce the following output for each subprogram:

1. a subprogram skeleton.

2. then the formal argument declaration statements, if any.
3. the common block declaration statements, if any.

4. then the variable declaration statements, if any.

5. then the data statements for initialized variables, if any.

6. then the data statements for uninitialized variables, if any.

Also, scalar variables or arrays that are declared in a subprogram but not used referenced or set
will be excluded from the ovtput FORTRAN 77 declaration and data statements,

The following figures will be used to demonstrate the DECLARE program.

4. Software Development Tools 23

default: example.l example.2

example.l: example.f
declare example.f example.l -injitialize=n

example.2: example. f
declare example.f example.2 -initialize=y

Figure 4.6: DECLARE example makefile.

PROGRAM example
IMPLICIT INTEGER(a-z)
DIMENSION a{10), b(l0), c(10)

CALL subl (c)
CALL sub2(c)
END

SUBROUTINE subl (c)

IMPLICIT INTEGER(a-2)
DIMENSION c(10)

REAL i, j(10), k

COMMON /block/ i(10), j, k(10)

DATA aa /1/
DO 10 a = aa, 10
cf{a) = c(a) + i(a) + j(a) + k(a)
10 CONTINUE
END

SUBROUTINE sub2(c)
IMPLICIT INTEGER(a-2)
DIMENSION c(10)

REAL 110, j, k(10)
COMMON /block/ i, j(10), k

DATA bb /1/
DO 10 b = bb, 10
i(b) = ki(b) - c(b)
j(b) = j(b) ~ c(b)
k(b) = i(b) - ci(b)
10 CCNTINUE
END

Figure 4.7: DECLARE example input (EXAMPLE.F).

From the following output, you can see that DECLARE program recognized that the variables
"A" (in "EXAMPLE") and "B" (in "EXAMPLE") were not necessary and so were excluded from
the output. Also, note that implicit variable declarations were changed to explicit variable
declarations.

24 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

PROGRAM EXAMPLE

* VARIABLE DECLARATION
INTEGER*4 C(10)
END

SUBROUTINE SUB1 ()

* FORMAL ARGUMENT DECLARATION
INTEGER*4 C(10)

* COMMON /BLOCK/ DECLARATION
COMMON /BLOCK/ I,J,K
REAL*4 I(10)

REAL*4 J(10)
REAL*4 x(10)

* VARIABLE DECLARATION
INTEGER*4 AA
INTEGER*4 A
END

SUBROUTINE SUB2()

* FORMAL ARGUMENT DECLARATION
INTEGER*4 C(10)

* COMMON /BLOCK/ DECLARATION
COMMON /BLOCK/ I,J,K
REAL*4 I(10)
REAL*4 J(10)
REAL*4 K(10)

* VARIABLE DECLARATION
INTEGER*4 BB
INTEGER*4 B

END
Figure 4.8: DECLARE example 1. output (EXAMPLE.1).

From the following output, you can see that the DECLARE program recognized that the
variables "A" (in "EXAMPLE"), "B" (in "SUB1") and "C" (in "SUB2") did not have an initial
value. Therefore, each variable was given an initial value of zero. Also, the subprogram
"BLKDAT" was automatically included to initialize all elements within the common "BLOCK".

4. Software Development Tools 25

PROGRAM EXAMPLE
* VARIABLE DECLARATION
INTEGER*4 C(10)
* UNINITIALIZED DATA
DATA C /10 =~ O/
END

SUBROUTINE SUBI1 ()

* FORMAL ARGCUMENT DECIARATION
INTEGER*4 C(10)

* COMMON /BLOCK/ DECLARATION
COMMON /BLOCK/ I,J,K
REAL*4 I(10)

REAL*4 J(1Q)
REAL*4 K(10)

* VARTABLE DECLARATICN
INTEGER*4 AA
INTEGER*4 A

* INITIALIZED DATA
DATA AA /1/

* UNINITIALIZED DATA
DATA A /0/

END

SUBROUTINE SUB2Z ()

* FORMAL ARGUMENT DECLARATION
INTEGER*4 C(10)

* COMMON /BLOCK/ DECLARATION
COMMON /BLOCK/ I,J,K
REAL*4 I(10)

REAL*4 J(10)
REAL*4 K(10)

* VARIABLE DECLARATION
INTEGER*4 BB
INTEGER*4 B

* INITIALIZED DATA
DATA BB /1/

* UNINITIALIZED DATA
DATA B /0/

END

BLOCK DATA BLKDAT

* COMMON /BLOCK/ DECLARATION
COMMON /BLOCK/ I,J,K
REAL*4 I(10)
REAL*4 J(10)
REAL*4 K (10)

* COMMON /BLOCK/ INITIALIZATION
DATA I /10 * QEO/
DATA J /10 * QEO/
DATA K /10 * OQOEO0/
END

Figure 4.9: DECLARE example 2. output (EXAMPLE.2).

Limitations of the DECLARE program:
1. Equivalenced variables are not supported.

2. Parameters are not supported in array declarations.

4.2.3. STRUCTURE program

The STRUCTURE program analyzes a FORTRAN 77 program in order to generate a
FORTRAN 77 subprogram call structure. Refer to Appendix L for the complete program source.

26 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

The command line syntax is:
structure <input file> <output file>
where:

<input file> = input file name
<output file> = output file name

The following figures will be used to demonstrate the STRUCTURE program.

def: :lt: example.out

example.out: example.f
structure example.f example.out

Figure 4.10: STRUCTURE example makefile.

PROGRAM example
DATA dt /1./
t

NOX
L)
[eReNeNo]

10 CONTINUE
CALL send(x, y, 2)

altitude = sqrt({x**2 + y**2 + 27*2)

CALL receive (dx, dy, dz)
CALL integrate{x, dx, dt)
CALL integrate(y, dy, dt)
CALL integrate(z, dz, dt)
t =t + dt

GO TO 10

END

SUBROUTINE send({x, y, 2}
CALL send_real 32bit (x)
CALL send real 32bit(y)
CALL send real 32bit(2z)
END - B

SUBROUTINE receive(dx, dy, dz)
CALL receive_real 32bit (dx)
CALL receive_real 32bit (dy)
CALL receive_real_32bit (d2)
END

SUBROUTINE integrate(x, dx, dt)
X = X + dx*dt
END

Figure 4.11: STRUCTURE example input (EXAMPLE.F).

The following figure contains output produced by the STRUCTURE program. As you can see,
the STRUCTURE program determined that the subprogram “example” called subprograms

"send"”, "sqrt", "receive” and "integrate".

When the subprogram "send” was called, it called

4. Software Development Tools 27

subprogram "send_real_32bit" three times. When the subprogram "receive” was called, it called
subprogram "receive_real_32bit" three times.

example

send
send_real 32bit
send_real 32bit
send_real 32bit

sqrt

receive
receive real 32bit
receive_real 32bit
receive_real 32bit

integrate

integrate

Figure 4.12: STRUCTURE example output (EXAMPLE.OUT).

There are no limitations on the STRUCTURE program.

4.2.4. CTIMER program

The CTIMER program analyzes a FORTRAN 77 program in order to produce a serial program
time profile from timing subprogram calls. Refer to Appendix E for the complete program
source.

The command line syntax is:
ctimer <input file> <output file>

where:
<input file> = input file name
<output file> = output file name

The CTIMER program takes as input a FORTRAN 77 program and produces as output a
modified FORTRAN 77 program with timer code automatically inserted around subprogram
calls. This modified program is then compiled, bound, and executed on the PFP to produce an
output file which details the number of times and length of time spent in each subprogram call.

The following figures will be used to demonstrate the CTIMER program.

28 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1
default: example.f ctimer.txt
example. f: example.f,old

ctimer example.f.old example.f >ctimer.txt

Figure 4.13: CTIMER example makefile.

PROGRAM example
DATA dt /1./
T

N X
ouoan
cooQo

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL send(x, y, 2)

altitude = sqrt(x**2 + y**2 + z**2)
CALL receive (dx, dy, dz)

CALL integrate(x, dx, dt)

CALL integrate(y, dy, dt)

CALL integrate(z, dz, dt)

t =t + dt

LOOP STOP
IF (¢ .LE. 1000.) GO TO 10

LOOP EPILOGUE
END

SUBROUTINE send(x, y, 2)
CALL send_real 32bit (x)
CALL send_real 32bit (y)
CALL send_real_ 32bit(z)
END

SUBROUTINE receive (dx, dy, dz)
CALL receive_real 32bit (dx)
CALL receive_real 32bit (dy)
CALL receive real 32bit (dz)
END - -

SUBRQUTINE integrate(x, dx, dt}
x = x + dx*dt

END
Figure 4.14: CTIMER example input (EXAMPLE.F.OLD).

The following figure contains the FORTRAN 77 program created by the CTIMER program. The
required "*LOOP* PROLOGUE" and "*LOOP* EPILOGUE" comments have been replaced by
calls to timer routines and the optional "*LOOP* START" and "*LOOP* STOP" comments
have been removed. Note that the "CALL start_timer()" and "CALL stop_timer()"" now appecar
around each subprogram call.

T, I ——

4. Software Development Tools 29

FROGRAM example |
DATA dt /1./
€ =

NNOX
[
cooco

CALL timer_prologue()
10 CONTTNUE

CALL start_timer(l)

CALL send(x, y, z)

CALL stop timer (1)
altitude = sQrt(x**2 + y**. + zx%2)
CALL start_timer (2)

CALL receive (dx, dy, dz)
CALL stop_timer(2)

CALL start_timer(3)

CALL integrate(x, dx, dt)
CALL stop_timer (3)

CALL start_timer(4)

CALL integrate(y, dy, dt)
CALL stop_timer (4)

CRLL start_timer ({5

CALL integrate(z, dz, dt)
CALL stop_timer (5)

t =t + dt

IF (¢t .LE. 1000.) THEN
GO TO 10
END IF

CALL timer_epilogue()
END

SUBROUTINE send(x, y, 2)
CALL start_timer(6)
CALL send_real 32bi:(x)
CALL stop_timer(6)

CALL start_timer (7}
CALL send_real 32bit(y)
CALL stop_timer(7)

CALL start timer(8)
CALL send_real 32bit(z)
CALL stop_timer(8)

END

SUBROUTINE receive{dx, dy, dz)
CALL start_timer(9)

CALL receive real 32biz (dx)
CALL stop timer(9)

CALL start timer{10)

CALL receive_real 32bit (dy)
CALL stop_timer(l9J)

CALL start_timer(ll)

CALL receive rea._ 32bit (dz)
CALL stop_timer(ll)

END

SUBROUTINE integrate(x, dx, dt)
X = x + dx*dt
END

Figure 4.15: CTIMER example output (EXAMPLE.F).

The following figure contains the timer list also created by the CTIMER program. The list
contains three fields:

1. the timer number.

2. the calling subprogram name.

30 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

3. (e called subprogram name.

exarple send

exanple receive

example integrate

example integrate

example integrate

send send_real 32bit

send send real 32bit

send send real 32bit
receive receive real 32bit
0 receive receive real 32bit
11 receive receive real 32bit

= b= D D -d 0N N S N

Figure 4.16: CTIMER example output (CTIMER.TXT).

The following figure contains the output from exccuting the EXAMPLE.F program on the PFP.
The output contains four fields:

1. the timer number.
2. the comment "TIMER".
3. the number of times the subprogram was called.

4. the length of time spent inside the subprogram call.

<countl> <timel>
<count?2> <time2l>
<count3> <timeld>
<count4> <timed>
<counts> <timed>
<counté> <rimeo>
<count?> <time7l>
<count8> <nime8>
<countd> <time9d>
MER <countl0> <timelil>
IMER <countll> <timell>

FAEd O @ dN NS WN

o

Figure 4.17: CTIMER example output (CTIMER.OUT).

Limitations of the CTIMER program:
1. Function subprograms are not timed.

2. Function statements are not timed.

4. Software Development Tools 31

4.3. Parallel programiming tools

This section will discuss programs designed to assist the PFP user in the design, development
and analysis of parallel programs for the PFP.

4.3.1. NETWORK program

The NETWORK program analyzes multipte FORTRAN 77 programs in order to automatically
generate a crossbar/sequencer compiler program. Refer to Appendix K for the complete
program source.

The NETWORK program takes as input multiple FORTRAN 77 programs and produces a
crossbar/sequencer compiler program with the maximum number of overlapping transfers per
cycle as possible. The number of cycles and number of overlaps are dependant on the order of
the manually placed SENDs and RECEIVE:s in the input FORTRAN 77 programs and the group
identity and ordering priority from the PRIORITY.TXT file. The NETWORK program orders
variables by looking for all variables that are ready to be sent and picking the highest ordering
priority variavles first. Also, it uses the group identity to make sure that only variables within a
group are allowed to overlap. The group identity and ordering priority information are easily
obtained from the Microsoft Project timing analysis charts.

An additional task of the NETWORK program is to verify the integrity of the network
commanication:

1. The sending processor's variable name and type must match exactly with the receiving
processor's variable name and type.

2. All processor's receive FIFOs arc examined to make sure that variable order matches
the sending variable order.

3. All SENDs and/or RECEIVEs must match, i. e., no leftovers.

The following figures will be used to demonstrate the NETWORK program.

32 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1
default: network.l network.2
COMMUNICATION = \

blockO.communication
blockl.communication
block2.communication
block3.communication

s

PROCESSOR = \

00=block0.communication
0l=blockl.communication
02=block2.communication
03=block3.communication

-

network.l: priority.l $(COMMUNICATION)

network <priority.l $(PROCESSOR) >network.l

network.2: priority.2 $(COMMUNICATION)

network <priority.2 $(PROCESSOR) >network.Z

.SUFFIXES: .f .communication
.f.communication:

communication $*.f $*.communication

Figure 4.18: NETWORK example makefile.

LOOP

10
LOOP

LOoOop

LOOP

PROGRAM block0
DATA a /1./
DATA t /0./

PROLOGUE

CONTINUE
START

CALL send real 32bit(a)
CALL receive_real_32bit (c)
CALL receive_real 32bit(d)
a=c¢c+d

t =t + 1.

IF (¢t .LT. 1000.) GO TO 10

EPILOGUE
END

Figure 4.19: NETWORK example input (BLOCKO.F).

PROGRAM blockl

4. Software Development Tools

33

DATA b /1./
DATA t /0./

L0OOP PROLOGUE

10 CONTINUE
LOOP START

CALL receive_real 32bit (a)
CALL send_real 32bit (b)
CALL receive_real 32bit (d)

b=a+d

t =t + 1.

LOOP STOP

IF (¢ .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.20: NETWORK example input (BLOCKIL.F).

PROGRAM block2

DATA ¢ /1./
DATA t /0./

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL receive_real 32bit (a)
CALL send real 32bit{c)
CALL receive_real 32bit (d)
c=a+d

t =t + 1.

LOOP STOP

IF (¢ .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.21: NETWORK example input (BLOCK2.F).

34 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

PROGRAM block3
DATA d /1./
DATA t /0./

LOCP PROLOGUE

10 CONTINUE
LOOP START

CALL receive_real 32bit (a)
CALL receive_real 32bit(b)
CALL send_real 32bit (d)
d=a+b

t =t + 1.

LOOP STOP
IF (¢t .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.22: NETWORK example input (BLOCK3.F).

The following figure contains the group identity and ordering priority for example 1. The
NETWORK program will try to, if possible, order the transfers with variable "A" first, then "C",
then "B" and finally "D". Since there are not any group dividers, there is only one group.

owmor

Figure 4.23: NETWORK exampie 1. input (PRIORITY.1).

The following figure contains the crossbar/sequencer compiler program for example 1. Note that
the NETWORK program determined that the "C" and "B" transfers could be overlapped. Also,
the bottom four lines are included to summarize the communication requirements for each
program.

Loop

CYCLE [1 }
p0l, p02, pO03

p00.2; (REAL*4 A 1000)

CYCLE [2]
p00 := p02.2; [REAL*4 C 1001]
p03 := p01.2; (REAL*4 B 1002]

CYCLE [3]
p00, pOl, p02 := p03.2; [REAL*4 D 1003]
{ p00 = block0.£f, S = 1, R = 2, 3
{ pO1 = blockl.f, S = 1, R = 2, 3]
[p02 = block2.f, § = 1, R = 2, 3]
{ p03 = blockd.f, S = 1, R = 2, 33
Figure 4.24: NETWORK example 1. output (NETWORK.1).

4. Software Development Tools 35

The following figure contains the group identity and ordering priority for example 2. The
NETWORK program will try to, if possible, order the transfers, with variable "A" first, then "C",
then "B" and finally "D". But this time, there are two groups divided by the "#" character.
Group 1 contains the variables "A" first and then "C". Group 2 contains variables "B" first and
"D".

OWwWs O

Figure 4.25: NETWORK example 2. input (PRIORITY.2).

The following figure contains the crossbar/scquencer compiler program for example 2. Note that
the NETWORK program determined that the "C" and "B" transfers could not be overlapped
since they each belong to different groups. Also, the bottom four lines are included to
summarize the communication requirements for each program.

LooP
CYCLE [1}
p0l, p02, p03 := p00.2; [REAL*4 A 1000]
CYCLE [2]
p00 := p02.2; [REAL*4 C 1001 }
CYCLE { 3]
p03 := p01.2; [REAL*4 B 2000]
CYCLE [4)
p00, pO01l, p02 := p03.2; [REAL*4 D 2001)
{ p00 = block0.£f, S = 1, R = 2, 3)
{ pGl = blockl.f, S = 1, R = 2, 31
[p02 = block2.f, S = 1, R = 2, 3)
[p03 = block3.f, 5§ = 1, R = 2, 3]
Figure 4.26: NETWORK example 2. output (NETWORK.2).
Limitation(s):

1. A maximum of 1000 groups with a maximum of 1000 variables per group.

2. Variables which are communicated between programs must maintain the same name
and type.

36 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

* INCORRECT
PROGRAM BLOCKO
CALL SEND_REAL_32BIT/{
CALL SEND_REAL_64BIT{
END

A)
B)

PROGRAM BLOCK1
CALL RECEIVE_REAL_64BIT(A)
CALL RECEIVE_REAL_64BIT(BB)
END

* CORRECT
PROGRAM BLOCKO
CALL SEND_REAL_32BIT (
CALL SEND_REAL_64BIT (
END

A
B)

PROGRAM BLOCK1
CALL RECEIVE_REAL_32BIT(
CALL RECEIVE_REAL_G64BIT {
END

A)
B)

Figure 4.27: NETWORK limitation 2. example.

3. A SEND and/or RECEIVE cannot be duplicated within a program.

* INCORRECT

IF (A. LT. B) THEN

CcC=...

CALL SEND_REAL_32BIT(C)
ELSE

C=...

CALL SEND_REAL 32BIT(C)
END IF

* CORRECT
IF (A. LT. B) THEN
cC = ...
ELSE
cC= ...
END IF
CALL SEND REAL 32BIT{ C)

Figure 4.28: NETWORK limitation 3. example.

4, A SEND and/or RECEIVE must be used every cycle.

* INCORRECT
IF (A. LT. B) THEN
cC=...
CALL SEND_REAL_32BIT(C)
END IF

* CORRECT
IF (A. LT. B THEN
c= ...
END IF
CALL SEND REAL 32BIT(C)

Figure 4.29: NETWORK limitation 4. example.

5. There is no guarantee the crossbar/sequencer compiler code is "optimal” since the

problem is NP-complete but every effect has been made to make it as efficient as possible.

4. Software Development Tools 37

4.3.2. USAGE program

The USAGE program analyzes multiple FORTRAN 77 programs in order to automatically
identify variables requiring interprocessor communication. Refer to Appendix M for the
complete program source.

The USAGE program takes as input multiple FORTRAN 77 programs and produces an output
which summarize all variables that share the same name and type and are used in more than one
program. Interprocessor variables which are only referenced in a program but never set are
output with the code "R". Interprocessor variables which are set or set and referenced in a
program are output with the code "S".

The USAGE program will make the following rules in determining variable usage:

1. variable usage will only be checked between the required "*LOOP* PROLOGUE"
and "*LOOP* EILOGUE" comments.

2. when a subprogram call is encountered, control is passed to that subprogram with the
resulting changes in the formal arguments reflected back to in the callers actual arguments.

3. that data and parameter statement assignments always occur.
4. that variable assignments inside and outside conditionals always occur.

S. that variable references inside and outside conditionals always occur.

The following figures will be used to demonstrate the USAGE program.

38 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1
default: summary.txt
USAGE = \

blockO.usage \
blockl.usage \
block2.usage \
block3.usage

PROCESSCR = \

00=block0.usage \
0l=blockl.usage \
02=block2.usage \
03=block3.usage

summary.txt: combine. txt

summary $(PROCESSOR) <combine.txt >summary.txt

combine.txt: type.txt $ (USAGE)

combine $(PROCESSOR) <type.txt >combine.txt

type.txt: example.f

type example.f type.txt

.SUFFIXES: .f .usage
.f.usage:

usage $*.f $*.usage

Figure 4.30: USAGE example makefile.

LOoop

10
Loop

LOOP

LooP

PROGRAM block0

REAL %, y, 2, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, 2z, ¢t /0., 0., 0., 0./
DATA dx, dy, dz, dt /1., 1., 1., 1./
PROLOGUE

CONTINUE
START

CALL send real 32bit (x)

X = x + de*dx

CALL receive_real 32bit (dz)
dx = dx + {0-1*d2)

t =t + dt

STOP
IF (¢ .LT. 1000.) GO TO 10

EPILOGUE
END

Figure 4.31: USAGE example input (BLOCKO.F).

4. Software Development Tools 39

PROGRAM blockl

REAL x, y, 2, €
REAL dx, dy, dz, dt
REAL altitude

DATA x, ¥y, z, t /0., 0., 0., 0./
1.,

DATA dx, dy, dz, dt /1., 1 1./

.

LOOP PROLOGUE

10 CONTINUE
L,OOP START

CALL send_real 32bit(y)

y =y + dt*dy ~

CALL receive_real 32bit(dz)
dy = dy + (0.1*dz)

t =t + dt

LOOP STOP
IF (¢t .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.32: USAGE example input (BLOCKL.F).

PROGRAM block2

REAL x, y, 2z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, 2z, ¢t /0., 0., 0., 0./
DATA dx, dy, dz, dt /1., 1., 1., 1./

L.OOP PROLOGUE

10 CONTINUE
LOOP START

CALL send_real 32bit(2)
CALL send_real 32bit{(dz)
z = z + dt*dz

dz = dz + (0.1*dz)

t =t + dt

LOOP STOP
IF (¢t .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.33: USAGE example input (BLOCK2.F).

40 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

PROGRAM block3

REAL x, vy, 2z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, 2z, t /0., 0., O., 0./
DATA dx, dy, dz, dt /1., 1., 1.,

LOOP PROLOGUE

10 CONTINUE
LOOP START

CALL receive_real 32bit (x)

CALL receive_ “real 32b1t(y)

CALL receive real 32bit(z)

altitude = sSQrL(x**2 + y**2 + z**2)
t =t + dt

LOOP STOP
IF (t .LT. 1000.) GO TO 10

LOOP EPILOGUE
END

Figure 4.34: USAGE example input (BLOCK3.F).

The followirg figure contains the output from the USAGE program produced after analyzing the
four input programs. A total of 5 variables were determined by USAGE to require interprocessor
communication. Note that the "T" line ends with "WARNING". It is there to inform *he user
that the USAGE program recognized multiple assignments of the same variable, a potential
problem. In this case, the variable is a "replicated" variable. This means that the code that
changes this variable is identical each place it is set and consequently the waming may be
ignored. Finally, the bottom four lines are included to summarize the communication
requirements for each program.

Page 1 tPOOIPO1|PO2|PO3|P04|POSIPQ6{POTIPO8IPO%|... P31}
---------------------------------- L b e ST S S S T T ¢ TPap S Y
Dz REAL*4 I R 1 R} 5| | | | | 1 | fownl |
---------------------------------- B et e E S S e S L T T s Topupre
T REAL*4 I S1 S1 51 8| | 1 !] | leaald | WARNING
---------------------------------- it et T T S S e s bt Tepa
X REAL*4 | S | | I R | | | | 1 | looal |
---------------------------------- B it T et R ST T SUSEPE A S SR
Y REAL*4 | I S i I R | | | | }] leeatd
---------------------------------- B e R s LT T T SRR T PR S
2 REAL~*4 | } I 81 R | l i | | t Veael b
---------------------------------- L et S R S s TP TSP S A SRR S
p00 = block0.£f, S = 2, R = 1, 3

p0l = blockl.f, S = 2, R= 1, 3

p02 = block2.f, S = 232, R= 0, 3

p03 = block3.f, S = 1, R = 3, 4

Figure 4.35: USAGE example output (SUMMARY.TXT).

Limitations of the USAGE program:

1. Equivalenced variables are not supported.

4. Software Development Tools 41

2. Common block variables are not supported.

4.3.3. ETIMER program

The ETIMER program analyzes multiple FORTRAN 77 programs in order to produce a parallel
program time profile from timing computation and I/O events. Refer to Appendix H for the
complete program source.

The ETIMER program takes as input multiple FORTRAN 77 programs and produces as output
modified FORTRAN 77 programs with timer code automatically inserted around each
computation block that is bounded by a SEND ~nd/or RECEIVE or by the required "*LOOP*
START" and "*LOOP* STOP" comments. The ETIMER program also produces an output file
which contains unique event numbers for the project, each program, each computation block and
SEND and RECEIVE pair. This output, when combined with the actual times from the 286/386
real-time timers and formatted properly, can be input into Microsoft Project which will produce
an accurate representation of a parallel simulation.

There are two ways of determining the dependency information required by Microsoft Project:

1. Assume that the SEND FIFO is not full. Consequently, the SEND processors
execution is not-blocked but the RECEIVE processors execution is blocked until the SEND
occurs. The problem with the timing analysis charts produced by Microsoft Project with this
dependency information is that it is probably optimistic with respect to the amount of parallelism
shown.

2. Assume that the SEND FIFO is full. Consequently, the SEND and RECEIVE
processors execution is blocked until the RECEIVE occurs. The problem with the timing
analysis charts produced by Microsoft Project with this dependency information is that it is
probably pessimistic with respect to the amount of parallelism shown.

Unfortunately, because of the finite-length of FIFOs, at some times assumption 1 is valid, and
some times assumption 2 is valid. One way to model finite-length FIFO activity correctly is to
time the SENDs. This way, if a FIFO were full, the time will be large, otherwise, the time will
be small.

After experimentation, we decided to do timing analysis on EXOSIM 2.0 using assumption 1
with the number of 16-bit crossbar transfers as the time taken to do a SEND .

The following figures will be used to demonstrate the ETIMER program.

" Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1
‘Jefaulﬁ: $(NEW) event.txt
QLD
block0.f.old \
blockl.f.old \
block2.f.0ld \
block3.f.old
NEW

block0.f \
blockl.f \
block2.f \
block3. £

$ (NEW) event.txt: $(OLD)

cat ${(OLD) | etimer | fsplit
mv main000.f event.txt

Figure 4.36: ETIMER example makefile.

The following four output files were output from the ETIMER program.

10

PROGRAM block0

REAL x, y, 2, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, v, z, t /0., 0., 0., 0./
DATA dx, dy, dz, dt /1i., 1., 1., 1./
CALL timer_prologue ()

CONTINUE

CALL send_real 32bit (x)
CALL start_timer(4)

x = x + dt*dx

CALL stop_timer (4)

CALL receive_real 32bit (dz)
CALL start_timer (5)

dx = dx + (0.1*dz)

t =t + dt

CALL stop_timer (5
IF (¢ .LT. 1000.) GO TO 10

CALL timer_epilogue ()

END
Figure 4.37: ETIMER example output (BLOCKO(.F).

4. Sofiwzr Development Tools

10

PROGRAM blockl

REAL x, y, 2z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, 2, t /0., 0., O.,
DATA dx, dy, dz, dt /i., 1.,

O
—
~

CALL timer_prologue ()
CONTINUE

CALL send_real_32bit(y)
CALL start_timer(8)

y =y + dt*dy

CALL stop timer (8)

CALL recelve real 32bit (dz)
CALL start_timer (%)

dy = dy + (0.1*dz)

t =t + dt

CALL stop_timer(9)
IF (¢t .LT. 1000.) GO TO 10

CALL timer_epilogue ()
END

Figure 4.38: ETIMER example output (BLOCKLF).

10

PROGRAM block2

REAL x, y, 2z, t
REAL dx, dy, dz, dt
REAL altitude

DATA x, y, 2z, ¢ /0., 0., 0., 0./
DATA dx, dy, dz, dt /1., 1., 1., 1./

CALL timer prologue()
CONTINUE

CALL send_real_32bit (z)
CALL send_real 32bit (dz)
CALL start timer(l13)

z = z + dt*dz

dz = dz + (0.1*dz)

t =t + dt

CALL stop_timer(13)
IF (¢t .LT. 1000.) GO TO 10

CALL timer epilogue()
END

Figure 4.39: ETIMER example output (BLOCK2.F).

44 Annual Report: Digital Eriulation Technology Laboratory Volume 1, Part 1

PROGRAM block3

REAL x, vy, 2, ¢
REAL dx, dy, dz, dt
REAL altitude

DaTA x, y, 2, t /0., O., 0.
DATA dx, dy, dz, dt /1., 1.

— O
-~

CALL timer_prologue()

1c CONTINUE

CALL receive_real 32bict(x)

CALL receive_real 32bir (y)

CALL receive_real 32bit(z)

CALL start_timer(15)

altitude = sqQrt(x**2 + y**2 + z**2)
t =t + dt

CALL stop_timer(l5)
IF (¢ .LT. 1000.) GO TO 10

CALL timer_epilogue ()

END
Figure 4.40. ETIMER example output (BLOCK3.F).

The following figure contains the output from the ETIMER program produced after analyzing the
four input programs.

p! “iect project 1 ""

pr ram block0 2 "*

co. munication x 1 real=4 3 "«
computation 2 3 "3"
computation 2 3 "4,12"

program blockl 2 "*
communicaticn y 1 real*4 3 ""
ce~-putation 2 3 7%
computation 2 3 "8,12"

0 program block2 2 "

1 communication z 1 re~"*4 3 "
2 communication dz 1 real*4 3 "11"
13 computation 2 3 "12"

14 program block3 2 “*

15 nomputaticen ? 3 "3,7,11"

R O JO NS W

Figure 4.41: ETIMER example output (ETIMER.TXT).

The next figure contains the output after executing the four BLOCK.F programs on the PFP.
The output contains the following fields:

1. the timer number.

2. the comment "TIMER".

3. the length of time spent in a computation event during simulation time windowa.
4. the length of time spent in a computation ¢vent during simulation time windowb.

5. the length of time spent in a computation e¢vent during simulation time windowc.

4. Software Development Tools 45

This information, when combined with ETIMER.TXT, and formatted properly, is input into
Microsoft Project which then will produce an accurate representation of a parallel simulation 1n
the form of a Gannt chart for each simulation time window.

4 TIMER <timeda> <timedb> <timedc> ...
5 TIMER <timeSa> <timeSb> <timedc> ...
8 TIMER <time8a> <time8b> <time8c> ...
9 TIMER <time%a> <time%a> <time9c> ...
13 TIMER <timel3a> <timel3b> <timel3ec> ...
15 TIMER <timel5a> <timelSb> <timelSc> ...

Figure 4.42: ETIMER example output (ETIMER.OUT).

Limitations of the ETIMER program:

1. The ETIMER program requires an output program (like Microsoft Project) in order to
display and manipulate the Gannt chart.

4.4. Special purpose tools

This section will discuss programs designed to assist us in the transformation of the sequential
program EXOSIM 2.0 into a form suitable for porting to the PFP.

4.4.1. NAMELIST program

The purpose of the NAMELIST program is to transform the EXOSIM 2.0 namelist files into
FORTRAN 77 data statements. Refer to Appendix J for the complete program source.

This program was necessary since namelist statements are not valid FORTRAN 77. Also, we
wanted to eliminate as much host I/O as possible in order to make the program as machine
independent as possible.

The command line syntax is:
namelist <input file> <output file>
where:

<input file> = input file name
<output file> = output file name

The following figures will be used to demonstrate the NAMELIST program.

46 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1
default: example.out
example.out: example.txt

namelist example.txt example.out

Figure 4.43: NAMELIST example makefile.

$SCONST1
CHAR1 = 'CONSTANT PARAMETER NAMELIST 1°'

PI = 3.14,
DTEPS = 1.0E-6,
IPLOT = 1,
IPRINT = 1,

TABLE = 1.10, 2.20, 4.400, 8.800, 16.160,
32.32, 64.64, 128.128, 256.256, 512.512,

ARRAY = 9*0.0, 100.0, 9*0.0, 1000.0

SEND
Figure 4.44: NAMELIST example input (EXAMPLE.TXT).

Using the above input, the NAMELIST program produced the following output. Note that each
variable or array assignment is made into one data statement.

*CONST1
DATA charl /'CONSTANT PARAMETER NAMELIST 1'/
DATA pi /3.14/
DATA dteps /1.0E-6/
DATA iplot /1/
DATA iprint /1/
DATA table /1.1, 2.2, 4.4, 8.8, 16.16, 32.32, 64.64, 128.128,
& 256.256, 512.512/
DATA array /9*0., 100., 9*0., 1000./
*END

Figure 4.45: NAMELIST example output (EXAMPLE.OUT).

Limitations of the NAMELIST program:

1. The NAMELIST program doesn't check variable type or array sizes, consequently, the
data statements may require some manual modifications.

4.4.2. EQUIVALENCE program

The EQUIVALENCE program takes as input a FORTRAN 77 program in order to extract
variable initialization information from cquivalence and data statements. The output produced is

4. Software Development Tools 47

compatible with the PROLOG program explained later. Refer to Appendix G for the complete
program source.

The command line syntax is:
equivalence <input file> <output file>
where:

<input file> = input file name
<output file> = output file name

The following figures will be used to demonstrate the EQUIVALENCE program.

default: example.out

example.out: example.f
equivalence example.f example.out

Figure 4.46: EQUIVALENCE example makefile.

48

Annual Report: Digital Emulation Technology Laboratory

Volume 1, Part 1

SUBROUTINE SEEKER

EQUIVALENCE (VAR(1) , SAMACQ), (VAR({ 2) , SAMTRK)
EQUIVALENCE (VAR({ 3) , SAMTRM) ., { VAR(4) , FOV)
EQUIVALENCE (VAR(S5) , SEKNOS(l)) , (VAR(29) , SEKTIM(1))
EQUIVALENCE (VAR{(53) , OQONTZP) ,» (VAR(54) , RATE(1l))
EQUIVALENCE (VAR{ 60) , SNRMIN) . { VAR(61) , FOVLIM)
EQUIVALENCE (VAR{ 62) , SNRACQ) , (VAR(63) , RFINAL)
EQUIVALENCE (VAR({ 64) ,ACQORNG(1,1)) , {(VAR(80) , TRGSIG(l))
EQUIVALENCE (VAR(84) , RNGTRK) » (VAR(85) , RNGTRM)
EQUIVALENCE (IVAR({ 1) , SEKTYP)y +» (IVAR({ 2) , ITRGSG)
EQUIVALENCE (IVAR(3) , BCKGRD)

DATA NR,NI / 16, 3

DATA IREAL / 2221,2222,2223,2224,2227,

2251,2275,2276,2282,2283,

1 2284,2285,2286,2302,2372,2374, 4*0 /

DATA LREAL / 1, 1, 1, 1, 24, 24, 1, 6, 1, 1,
1 1, 1, 1e, 4, 1, 1, 4*0 /

DATA IINT / 41, 42, 43, 7*0 /

DATA LINT / 1, 1, 1, 7*0 /

END

SUBROUTINE TARGET

EQUIVALENCE (VAR(1) , TARLEN) , (VAR({ 2) , TARWID)
EQUIVALENCE (VAR({ 3) , GMU) ., (VAR{ 4) , TARPOS
EQUIVALENCE (VAR({ 7) , TARVEL) , (VAR{ 10) , TARRI)
EQUIVALENCE { VAR({ 11) , CSOPOS) , (VAR{ 14) , CSOVEL)
EQUIVALENCE (VAR{ 17) , CSORI) ., (VAR{ 18) , TNKPOS)
EQUIVALENCE (VAR(21) , TNKVEL) , ! VAR(24) , TNKRI }
EQUIVALENCE (VAR(25) , RHOPOS) , (VAR(28) , RHOVEL)
EQUIVALENCE (VAR(31) , RHORI) . (VAR(32) , CLTPOS)
EQUIVALENCE (VAR(35) , CLTIVEL) , (VAR(38) , CLTRI)
EQUIVALENCE (VAR(39) , DTR) ., (VAR(40) , WIDTH)
EQUIVALENCE (VAR(41) , FOCLEN) , { VAR{ 42) , RMULT)
EQUIVALENCE (IVAR(1) , NOBJ } + (IVAR({(2) , ISKOUT)
EQUIVALENCE (IVAR({ 3) , SEKTYP) , (IVAR{ 4) , NTARRS)
DATA NR,NI / 22, 4 /

DATA IREAL / 3660,3661,

6,3662,3665,3668,3669,3672,3675,

1 3676,3679,3682,3683,3686,3689,3690,3693, 369%6,
2 2,3616,3614,3697,28*0 /

DATA LREAL / 1, 1, 1, 3, 3, 1, 3, 3, 1,
1 3, 3, 1, 3, 3, 1, 3, 3, 1,
2 1, 1, 1, 1,28*0 /

DATA IINT / 260, 241, 41, 261, 6*0 /

DATA LINT / 1, 1, 1, 1, 6*0 /

END

Figure 4.47: EQUIVALENCE example input (EXAMPLE.F).

Using the above figure as input (a FORTRAN 77 program fragment from EXOSIM 2.0), the
EQUIVALENCE program produced the following output. The information contained about
each variables includes:

1. source file name

2. local variable name

3. global variable name

4, variable usage count

4. Software Development Tools

49

d ("UUSEEKER.FOR", "SAMACQ", "RIN(2221)",0)
d ("UUSEEKER.FOR"”, "SAMTRK"”, "RIN(2222)",0)
d ("UUSEEKER.FOR", "SAMTRM", "RIN (2223) ", 0)
d ("UUSEEKER.FOR", "FOV", "RIN (2224)",0)

d ("UUSEEKER.FOR", "SEKNOS", "RIN (2227)", 0)
d ("UUSEEKER.FOR"”, “SEKTIM", "RIN(2251)",0)
d ("UUSEEKER.FOR", "QNTZP", "RIN(2275)",0)

d ("UUSEEKER.FOR", "RATE", "RIN(2276)", 0}

d ("UUSEEKER.FOR", "SNRMIN", "RIN(2282) ", 0)
d ("UUSEEKER.FOR"”, "FOVLIM", "RIN{2283)",0)
d ("UUSEEKER.FOR", "SNRACQ", "RIN (2284)", 0)
d ("UUSEEKER.FOR", "RFINAL", "RIN (2285)", Q)
d ("UUSEEKER.FOR", "ACQRNG", "RIN (2286) ", 0)
d ("UUSEEKER.FOR", "TRGSIG", "RIN(2302)",0)
d ("UUSEEKER.FOR", "RNGTRK", "RIN(2372)",0)
d ("UUSEEKER.FOR", "RNGTRM”, "RIN(2374) ", 0)
d ("UUSEEKER.FOR", "SEKTYP", "IIN(41)", 0)

d ("UUSEEKER.FOR", "ITRGSG", "IIN(42)",0)

d ("UUSEEKER.FOR", "BCKGRD", "IIN(43)",0)

d ("UUTARGET.FOR", "TARLEN", "RIN (3660)", Q)
d ("UUTARGET.FOR", "TARWID", "RIN(3661) ", 0)
d ("UUTARGET.FOR"™, "GMU", "RIN(6) ", 0)

d ("UUTARGET.FOR", "TARPOS", "RIN (3662) ", 0)
4 ("UUTARGET.FOR", "TARVEL", "RIN(3665)",0)
d ("UUTARGET.FOR", "TARRI", "RIN{3668) ", 0)
d ("UUTARGET.FOR", "CSOPOS™, "RIN(3669)",0)
d ("UUTARGET.FOR", "CSOVEL"™, "RIN(3672)", 0)
d ("UUTARGET.FOR", "CSORI", "RIN(3675)", 0)

d ("UUTARGET.FOR", "TNKPOS", "RIN(3676) ", 0)
d ("UUTARGET.FOR", "TNKVEL", "RIN (3679) ", 0)
d ("UUTARGET.FOR", "TNKRI", "RIN (3682)",0)

d ("UUTARGET.FOR", "RHOPOS", "RIN(3683) ", 0)
d ("UUTARGET.FQR", "RHOVEL", “RIN(3686) ", 0)
d (*UUTARGET.FOR", "RHORI", "RIN (3689) ", 0)

d ("UUTARGET.FOR", "CLTPOS", "RIN(369%0)", 0)
d ("UUTARGET.FOR", “CLTVEL", "RIN(3693)",0)
d ("UUTARGET.FOR", "CLTRI", "RIN{3696) ", Q)

d ("UUTARGET.FOR", “DTR", "RIN(2)",0)

d ("UUTARGET.FOR", "WIDTH", "RIN (3616} ", 0)
d ("UUTARGET.FOR", "FOCLEN", "RIN(3614)", 0)
d ("UUTARGET.FOR", "RMULT", "RIN(3637)", Q)

d ("UUTARGET.FOR", "NOBJ", "IIN(260)",0)

d ("UUTARGET.FOR", "ISKOUT"™, "IIN(241)",0)

d ("UUTARGET.FOR", "SEKTYP", "IIN(41)",0Q)

d ("UUTARGET.FOR", "NTARRS", "IIN(261)",0)

Figure 4.48: EQUIVALENCE example output (EXAMPLE.OQUT).

Limitations of the EQUIVALENCE program:

1. The program was designed specifically for the EXOSIM 2.0 program.

4.4.3. COMMON program

The COMMON program takes as input a FORTRAN 77 program in order to extract global
variable information from common block statements. The output produced is compatible with

the PROLOG program explained later. Refer to Appendix D for the complete program source.

The command line syntax is:

50 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

common <input file> <output file>
where:

<input file> = input file name
<output file> = output file name

The following figures will be used to demonstrate the COMMON program.

default: example.out

example.out: example.f
common example.f example.out

Figure 4.49: COMMON example makefile.

SUBROUTINE ACCEL

of COMMON "RACCEL" USED FOR MIDFLIGHT CAPABILITIES ONLY
COMMON / RACCEL / DRSIGA, PSIA , THTA , PHIA . THXZA ,
. THXYA , THYZA , THYXA , THZYA , THZXA ,
SF1A , SF2A , DCA . TOACCE , GRLST ,
. XYZDP , ABI2 , ABIl , ABO2 . ABOl
END
SUBROUTINE KALMAN
C COMMON “RKALMN®™ USED FOR MIDFLIGHT CAPABILITIES ONLY
COMMON / RKALMN / TKF ,» IDRTOK PP11l . PP12 , PP22 v
. PY11 , PY12 PY22 , PLMDFP , YLMDFP ,

’
’
PLAMH , YLAMH , PLAMDH , YLAMDH , PLAMDF ,
YLAMDF , TGIL , KFMODE , IFPAS

Figure 4.50: COMMON example input (EXAMPLE.F).

ENP

Using the above figure as input (a FORTRAN 77 program fragment from EXOSIM 2.0), the
EQUIVALENCE program produced the following output. The information contained about each
variables includes:

1. source file name
2. local variable name
3. common variable name

4. variable usage count

4. Software Development Tools 51

d("UUACCEL.FOR", "DRSIGA"™, "RACCEL.DRSIGA", 0)
d{"UUACCEL.FOR", "PSIA", "RACCEL.PSIA", 0)

d (*UUACCEL.FOR", "THTA", "RACCEL.THTA", 0}

d (“UVUACCEL.FOR", "PHIA", "RACCEL.PHIA", 0)

d ("UUACCEL.FOR", "THXZA", "RACCEL. THXZA", 0)

d ("UUACCEL.FOR", "THXYA", "RACCEL. THXYA", 0)

d ("UUACCEL.FOR", "THYZA", "RACCEL.THYZA", 0)

d ("UUACCEL.FOR", "THYXA", "RACCEL.THYXA", 0)

d ("UUACCEL.FOR", "THZYA", "RACCEL.THZYA", Q)

d (*UUACCEL.FOR", "THZXA", "RACCEL.THZXA", 0)
d("UUACCEL.FOR","SF1A", "RACCEL.SF1A", 0)

d ("UUACCEL.FOR", "SF2A", "RACCEL.SF2A", 0)

d ("UUACCEL.FOR", "DCA", "RACCEL.DCA", Q)

d ("UUACCEL.FOR", "TOACCE", "RACCEL.TOACCE", 0)
d ("UUACCEL.FOR", "GRLST", "RACCEL.GRLST", 0)

d ("UUACCEL.FOR", "XYZ2DP", *RACCEL.XYZDP", 0)

d ("UUACCEL.FOR", "ABI2", "RACCEL.ABI2", 0)

d {"UUACCEL.FOR", "ABI1", "RACCEL.ABI1", 0)

d ("UUACCEL.FOR", "ABO2", "RACCEL.ABO2", 0)

d ("UUACCEL.FOR", "ABO1", "RACCEL.ABO1", 0)

d ("UUKALMAN.FOR", "TKF", "RKALMN. TKF", 0)

d ("UUKALMAN.FOR", "IDRTOK", "RKALMN. IDRTOK", 0)
d ("UUKALMAN.FOR", "PP11", "RKALMN.PP11", 0)

d ("UUKALMAN.FOR", "PP12", "RKALMN.PP12",0)

d ("UUKALMAN.FCR", "PP22", "RKALMN.PP22",0)

d ("UUKALMAN.FOR", "PY11™, "RKALMN.PY11l", 0)

d ("UUKALMAN.FOR", "PY12", "RKALMN.PY12", 0)

d ("UUKALMAN.FOR", "PY22", "RKALMN.PY22",0)

d ("UUKALMAN.FOR", "PLMDFP", "RKALMN.PLMDFP", 0)
d ("UUKALMAN.FOR", "YLMDFP*", "RKALMN.YLMDFP", 0)
d ("UUKALMAN.FOR", "PLAMH®", "RKALMMN.PLAMH", 0)

d ("UUKALMAN.FOR", "YLAMH", "RKALMN.YLAMH", 0)

d ("UUKALMAN.FOR", "PLAMDH", "RKALMN.PLAMDH", 0)
d ("UUKALMAN.FOR", "YLAMDH", "RKALMN.YLAMDH", 0
d:"UUKALMAN.FOR“:"PLAMDF":“RKALMN.PLAMDF“:O;
d ("UUKALMAN.FOR", "YLAMDF", “RKALMN.YLAMDF", 0)
d ("UUKALMAN.FOR", "TGIL", "RKALMN.TGIL", 0)

d ("UUKALMAN.FOR", "KFMODE", "RKALMN.KFMODE", 0)
d ("UUKALMAN.FOR", “IFPAS", "RKALMN.IFPAS", 0)

Figure 4.51: COMMON example output (EXAMPLE.OUT).

Limitations of the COMMON program:

1. The program was designed specifically for EXOSIM 2.0 program.

4.4.4. PROLOG utility

The PROLOG program "varusage" was written to assist in the systematic initialization of all
required variables. Once other utilities had determined the dependencies and the correct initial
values, varusage would then analyze the dependencies and group them into "optimal" sets. This
enabled us to combine various types of initializations (BLOCKDATA routines, explicit
assignments, and NAMELISTSs) into short files of DATA statements which could be included
only in the files where they were necessary.

One approach to this is to create a unique include file for each subroutine and main program
partition in the multi-partiion application (EXOSIM, in this case). The problem with this is that
many of the same initialization statements will appear in multiple include files. Commonly-used
variables and constants, like the radius of the earth and w, for example, would have to be
initialized in many DATA statements spread across several files. If the initial value of variable

52 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

were changed, as in a parametric study, it would be necessary to manually edit many files to
make the same change.

Consequently, we chose another approach in which we found subsets of variables which were
always used together. For example (hypothetically), we would find that every routine which
required an initial value for latitude also required an intial value for longitude (and perhaps other
mutually-used values as well). Then, all of these variable names were grouped together in a
single include file with the appropriate DATA statements, and a list was maintained of which
routines required each particular include file. Of course, there was the possiblity that we would
find that the variables did not group particularly well, perhaps resulting in hundreds of include
files with only one or two DATA statements in each file. It tumned out, though, that many
groupings were found, greatly simplifying our file management tasks.

The varusage program was used several times. First, it was used to group the variables found in
the many COMMON blocks spread throughout the principle subroutines of EXOSIM. Later, it
was applied to the BLOCKDATA variables and to the so-called "dynamic" variables included as
COMMON blocks in the main program.

The input to varusage is a list of dependencies in the form

d("Filename.src","aliasVARa", "VARa"”, NumRefs)

where d is simply a keyword which actually corresponds to a PROLOG predicate, Filename.src
is a fortran source file name, aliasVARa is the commonly-used short name of an initialized
variable used within Filename.src, VARa is a longer, more fully descriptive name which we use
to indicate the usage of the variable within a COMMON block, and NumRefs is the actual
number of times that the variable is referenced. This input list is created automatically by a
separate utility program which parses the various subroutines (or main program segments, in
some cases) and outputs a line for each variable under consideration, even if it is not referenced
at all (in which case NumRefs is set to 0).

An exampie inpui £1¢ of Jepencineics 15 yiven tiv . The actual initial values of variabies need
not be provided, since varusage simply creates sets of groupings. Other utility programs are used
to merge the output of varusage with the known initial values, thus creating the files of DATA
statements, which may be classified. In this example, all of the FORTRAN source files end with
the extension .F, as in UUKVAUTO.F. The aliasVARa and VARa parameters may scem
redundant, since the VARa parameter (in this example) is always aliasVARa prefixed by the
COMMON block name in which it was found. In other applicatiions of varusage, however, we
used this feature to detect variables which were in the same position of multiple COMMON
blocks, but named differently (and thus aliased). This was important to ensure that the
differently-named variables were in fact initialized conectly.

Example input file for EXOSIM subroutine COMMON blocks:

d ("UUKVAUTO.F", "SW1 7", "RKVAUT.SW17", 5)
d ("UUKVAUTO.F", "SW18", "RKVAUT.SW18", 3)
d ("UUKVAUTO.F", "SW18P", "RKVAUT.SW18P", 4)
d("UUKVAUTO.F", "SW18Y", "RKVAUT.SW18Y", 4)
d ("UUKVAUTO.F", "SW19", "RKVAUT.SW19", 5)
d ("UUKVAUTC.F","SW19P", "RKVAUT.SW19P", 7)

d ("UUKVAU
TO.F", "
d ("UUKVAU LET, "SW1oYY, v
d‘"UUKVAUgg';:’ ::IROLL“: ,,gizﬁg’r- SW19Y", 7)
d("UUKVAUTo'pn'“TPTONz","RKvAE'IROLL",3)
d‘"UUKVAUTo'pu'"TYTONZ",“RKVAUT‘TPTONZ".ls)
d(uUU}(VAUTO'F"I "TNEXTP "’ WRKVA T.TYTON2",15)
d ("UUKVAUTO'F_' "TNEXTYIII .,RKVAUT-TNEXTP,, 5)
d ("UUKVAUTO-F", uFLTCan’ "RKVAUT. TNBXTYII: 5)
d(uUUACCEL.I;,. . FLTCYL--',.RKVAUT-FLTCPL.,IZ)
d ("UUACCEL pn'"DRSIGA":“RACCEUT'FLTCYL" 2)
g‘"UUACCEL'F"'u?ﬁIA"'"RACCEL g;?islGA".é)
(“UUACCE". "' TA", "RAC) ", 3)
- CEL ’
d ("UUACCE En, "PHIA™, " .THTA", 3
L.Fn,n , "RACCEL 0 3)
d ("UUACCE , "THXZA", "RA _PHIA", 3)
d(~UUACCE§-§:::THxYAu;"RAgggL.Tszg",z)
nUUACCEL- u’ YXAY, "RAC . ZA", 2)
d ("UUACCE .F®, "THZYA", * CEL.THYXA"
L. RA . 2)
d ("UUACCEL g:'rTHZXA":uRAgggL-THZYA",z)
g("UUACCEL.Fu';gglA"'"RACCELLéE?ZXA"'Z)
("UUACCEL. ”, ZA”I"RAC . A", 6)
. CEL.S 4
d ("UUACCE F®, "DCA", "RA .SF2A", 6
L.Ew, "DCAY, "RACCEL . OCA' .6
d ("UUACCEL.F*, TOACCE®, "RACC CA", 4)
L. RA
d ("UUACCEL g:’:GRLST“,5RAC§§EL'T°ACCE“,2)
g:”UUACCEL.F“' nxgiDP" "RACCEt'iiLST"' 6)
-IUUACCEL- ", 2", "RACC - ZDP™, 6)
d ("UUACCE .F","ABI1",6 "RA EL.ABI2", 3)
:‘"Uvaccai"iz'::§°2"i'-n€§§%:'ﬁgg;"/4>
("UUACST b ’ O1",6 "RAC . v, 3)
d(.UUACSTSEAE:' "TREFLA", ,,giééABOI " 4)
("UUACSTHR- . SF", "RA . STC" O;
d ("UUACST “F", "AOFF1"," CSTR.ACSF", 22
d("UUAcsng'g:':AOszu:ngiggTR-Aopplulé)
d("UUACSTHR'Fn'HTMACSA":"RAcg¥'AoFF2":6)
d("UUACSTHR.FuIuTHAcsA”:"RACSTR'TMACSA",43)
g(:UUACSTHR.Fn'u%ENA"'"RACSTR R THACSAY, 39)
. - "
d(nUUACSTHR'F"'"TMACSB"'"RACSTR TA ,26)
{"UUACSTHR F"’n HACSB", "RACST _TMACSB", 43)
gtngAERo,pL "%LE%EB"'"RACSTR ﬁéggAcsBul39)
UAERO F"'- w, "RAERO . ", 26)
d("UUAERo. ""MACHL"'"RA .TLSTR", 0)
. ER ’
d ("UUATMOSFF;“{}LFATL"' "RAE[?(.)MACHL"I 0)
d (“UUATMOS'F"' TLSTA", "RATMO-ALFATL“' 0)
d ("UUBTHRS'E' F:.HI:LTL“' "RATMOSS.TLSTA"' 0)
d (“UUBTHRST'FH' TLSTB", "RB"‘H‘ALTL"I 0)
3("UUBTHRsr'pn':g°L“,"RBTH§TR$6EL5TB",0)
("UUFRCT .F","BOFF2"," - ", 0)
d(nUUFRCT:g-E:,uTLsTFu:“;§g¥RT.BOFF2"'4)
d (uUUFRCTHR'F”, "TREFL"Y, .,RFRT::R.TLSTF..’ 0)
d {("UUGYRO F:' -.'"VCOD"'"RFRTH R.TREFL", 0)
("UUGYRO. . TG", "RGY . ", 3)
JEw w ’ RO.THTG"
d ("UUGYR , "PHIG"," TG 3)
O.F%, » , "RGYRO.P '
d ("UUGYRO.F", THXZG", "RGYRC HIG",3)
d("UUGYRo'E:':THXYG--:..Rcigg-THXanlZ)
3("UUGYR0.Fn'"$SYZG"."RGYRo'ggﬁyc"'z)
(eUUGERO . bn’ wiiaegn’ wR -THYZG", 2)
Fn,m , "RGYRO.T ’
d {"UUGYR . "THZYG", " .THYXG", 2
Q.Fr m , "RGYRO . 2)
d ("UUGYRO , "THZXG", " .THZYG", 2
LEw, « "RGYRO . 2)
4 ("UUGYRO.F", SF1G", "R .THZXG", 2
JFn » ’ GYRO.S . 2)
d {("UUGYRO , "SF2G", "R .SF1G", 6)
JEm, » ’ GYRO.SF ’
d ("UUGYRO , "DCG", "RG .SF2G", 6)
JEm, " ! YRO.DCG" !
d ("UUGYRO.E™. TOGYRO", ™ G", 4)
. R
S e e e
("UUGYRO.F™, 2", "RGYRO. ,2)
Fnon ’ YRO.W
d ("UUGYR , "WBIlM, WBIZ2",b3)
Q.Fn, » , "RGYRO.W .
S UUGRO Fn’ "aBOa " -WBI1", 4)
C.F», " , "RGYRO.W ’
d ("UUGYRO , "WBO1","R .WBO2", 3)
JFn, » , "RGYRO.WB '
d ("UUKA , "DRSIGG"," . olv, 4)
d ("UUKAi‘m:.F:, "TKF", :.Rggisg-DRSIGGn' 3)
d(nUUKALMAN.g..' "IDRTOK", ,,RKA-TKF‘--' 4)
e
UKAIMAN Eu’ pobau’ whkE -PP11",.5)
d ("UUKALMA LF","PP22", "R LMN.PP12",8
3‘"””“ALMA:'§I'"PYII":"Riif::'g?ZZ"'IE)
("UUKALMA . ""Ple","R LPY11",15
d ("UUKALMA:.FI:' "py22", "Ri}QPMN.Ple.,I 8))
d(“UUKALMAN.gn'::PLMDFPHI"R;:?iPYZZ"IIZ)
d("UUKALMAN' "r YLMDFP","R}(AL‘MN'PLMDFP" 2)
d("UUKALMAN'F""PLAMHu "RKA LMN'YLMDFP"'Z
'F""YLAMHu'" LMN.PLAMH" 4,)
" ARKALMN . YLAMH® 41

4.
Sofiware Development Tools

53

54 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

d ("UUKALMAN.F", "PLAMDH", "RKALMN.PLAMDH", 6)
d (“UUKALMAN.F", "YLAMDH" , “RKALMN.YLAMDH", 6)
d ("UUKALMAN.F", "PLAMDF", "RKALMN.PLAMDF", 3)
d ("UUKALMAN.F", "YLAMDF", "RKALMN.YLAMDF", 3)
d ("UUKALMAN.F", "KFMODE", "RKALMN.KFMODE", 17)
d ("UUKALMAN.F*", 6 “IFPAS", "RKALMN.IFPAS”,S)

d ("UUMASSPR.F", "TLSTM", "RMASS.TLSTM", 0)

d ("UUMASSPR.F*®, "MASSL"”, "RMASS.MASSL", 0)

d ("UUMCAUTO.F", "ANGACL", "RMAUTO.ANGACL", 12}
d (“UUMCAUTO.F", "IMCPAS", "RMAUTO.IMCPAS", 8)
d ("UUMCAUTO.F", "TP2END", "RMAUTO. TP2END", 3)
d ("UUMCAUTO.F™, "TP3END", "RMAUTO. TP3END", 4)
d (®"UUMCAUTO.F"™, "IP2END", "RMAUTO.IP2END", 4)
d ("UUMCAUTO.F", *TCOAST", "RMAUTO. TCOAST", 4)
d ("UUMCAUTO.F"”, "ICOAST", "RMAUTO. ICOAST", 4)
d ("UUMCAUTO.F"®, "TRDONE™", "RMAUTO. TRDONE", 4)
d ("UUMCAUTO.F", "IRATE", "RMAUTO. IRATE", 5)

d ("UUMCAUTO.F*~, "IACSB1*, "RMAUTO.IACSB1",10}
d ("UUMCAUTO.F", "IACSB2", "RMAUTO.IACSB2", 3)
d ("UUMCAUTO.F", "ICNT", "RMAUTO.ICNT",10)

d ("UUMCAUTO.F", "IVPFL", "RMAUTO.IVPFL", 39)

d ("UUMCAUTO.F", “IVPFLN", “"RMAUTO.IVPFLN", 7)
d ("UUMCAUTO.F", "TBURN2", "RMAUTO. TBURN2", 3)
d ("UUMCAUTO.F", "OMEGAI", "RMAUTO.OMEGAI", 3)
d ("UUMCAUTO.F", "TLSTMA", "RMAUTO.TLSTMA", 2)
d ("UUMCAUTO.F", "AACCEL", "RMAUTO.AACCEL", 20)
d (*UUMCGUID.F¥, "ISEQ", "RMGUID.ISEQ",12)

d ("UUMCGUID.F", "TVCOMP", "RMGUID.TVCOMP", 3)
d (“"UUMCGUID.F", "OMEGAQ", "RMGUID.OMEGAOQ", 6)
d("UUMCGUID.F", *IMIDB2", "RMGUID.IMIDB2", 3)
d (*"UUMCGUID.F", "TMIDB2", "RMGUID.TMIDB2", 2)
d("UUMCGUID.F", "ISK30ON", "RMGUID.ISK3ON", 2)
d ("UUMISSIL.F"®, *XYZLCH", "RMISSL.XYZLCH", 6)
d("UUNAVIG.F", "GRLAST", "RNAVIG.GRLAST", 6)
d ("UUNAVIG.F", "MNAV", "RNAVIG.MNAV", Q)

d ("UUNAVIG.F”, "DTX0", "RNAVIG.DTXO0", 3)

d ("UUNAVIG.F", "DTYO", "RNAVIG.DTYO", 3)

d ("UUNAVIG.F",“DTZ20", "RNAVIG.DTZ20", 3)

d ("UUNCRM.F", "GSET", "NORCOM.GSET", 2)

d ("UUNORM.F", "ISET", "NORCOM,. ISET", 4)

d ("UUOBTARG.F", "FIRST2", "ROBTRG.FIRST2", 2)
d ("UUOBTARG.F", "GRTPST", "ROBTRG.GRTPST", 2)
d ("UUSSPLAG.F", "NLATCH", "RSPLAG.NLATCH", 46)
d("UUSSPLAG.F", "TLATCH", "RSPLAG.TLATCH", 6)
d ("UUSSPLAG.F", "LAMMSV", "RSPLAG.LAMMSV", 10)
d ("UUSSPLAG.F", "RRELSV", "RSPLAG.RRELSV",15)
d(“UUSSPLAG.F", "VRELSV", "RSPLAG.VRELSV",15)
d ("UUSSPLAG.F", "TI2M5V",6 "RSPLAG. TI2MSV", 45)
d ("UUSSPLAG.F", "SNRSV", "RSPLAG.SNRSV", 5)

d ("UUTARGET.F", "TL1", "RTARG.TL1", 3)

d ("UUTARGET.F", "GRTLST", "RTARG.GRTLST", 2)

d (“"UUTARGET.F", "FIRST1", "RTARG.FIRST1", 2)

d ("UUVCSTHR.F", "TREFLV*", "RVCSTR.TREFLV", 0)
d{"UUVCSTHR.F", "TLSTV", "RVCSTR.TLSTV", 0)

d (“UUVCSTHR.F", "TMVCS", "RVCSTR.TMVCS",17)

d ("UUVCSTHR.F", "THVCS", "RVCSTR. THVCS", 13)

d {"UUVCSTHR.F", "LENVCS", "RVCSTR.LENVCS", 3)

The output of varusage for this example is given below. There are two output files. One lists the
merged variables and the other lists the source files which in effect "need" each of the merged
groups. First we show the merged variable groups. The first few lines are warning messages,
indicating that some variables were not used at all. The significant part of the output follows,
headed by the words "Merged lists of dependencies.” Within this section are multiple lists, each
beginning with a program-generated filename for the DATA statements. This filename is used as
a cross-reference to the other output file. This list of depencencies is fed to another utility which
actually created the files of DATA statements,

Example output file (1 of 2):

RACSTR.TREFLA/TREFLA not used in UUACSTHR.F
RACSTR.TLSTC/TLSTC not used in UUACSTHR.F
RAERO.TLSTR/TLSTR not used in UUAERC.F

4. Software Development Tools 55

RAERO.MACHL/MACHL not used in UUAERC.F
RAERO.ALFATL/ALFATL not used in UUAERO.F
RATMOS.TLSTA/TLSTA not used in UUATMOS.F
RATMOS.ALTL/ALTL not used in UUATMOS.F
RBTHRT.TLSTB/TLSTB not used in UUBTHRST.F
RBTHRT.TOL/TOL not used in UUBTHRST.F
RFRTHR.TLSTF/TLSTF not used in UUFRCTHR.F
RFRTHR.TREFL/TREFL not used in UUFRCTHR.F
RFRTHR.VCOD/VCOD not used in UUFRCTHR.F
RMASS.TLSTM/TLSTM not used in UUMASSPR.F
RMASS.MASSL/MASSL not used in UUMASSPR.F
RNAVIG.MNAV/MNAV not used in UUNAVIG.F
RVCSTR.TREFLV/TREFLV not used in UUVCSTHR.F
RVCSTR.TLSTV/TLSTV not used in UUVCSTHR.F

Merged lists of dependencies:

~/INCLUDE/SSDYNO1l.DAT
FLTCYL
FLTCPL
TNEXTY
TNEXTP
TYTON2
TPTON2
IROLL
SW19Y
SW19p
SW19
SW18Y
SW18p
SWis
SW17
%%

~/INCLUDE/SSDYNQ2.DAT
ABO1l
ABO2
ABIl
ABI2
XYZDP
GRLST
TOACCE
DCA
SF2A
SF1A
THZXA
THZYA
THYXA
THYZA
THXYA
THXZA
PHIA
THTA
PSIA
DRSIGA
%

~/INCLUDE/SSDYNO3.DAT
LENB
THACSB
TMACSB
LENA
THACSA
TMACSA
AOFF2
AOFF1
ACSF
%

~/INCLUDE/SSDYNO4.DAT
BOFF2
%%

~/INCLUDE/SSDYNOS.DAT
DRSIGG

WBO1

WBO2

WBI1

WBI2

CIMO

TOGYRO

56 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

DCG
SF2G
SF1G
THZXG
THZYG
THYXG
THYZG
THXYG
THXZG
PHIG
THTG
PSIG
%

~/INCLUDE/SSDYNO6.DAT
IFPAS
KFMODE
YLAMDF
PLAMDF
YLAMDH
PLAMDH
YLAMH
PLAMH
YLMDFP
PLMDFP
PY22
PY12
PY11l
PP22
PP12
PP11
IDRTOK
TKF

"%

~/INCLUDE/SSDYNQO7.DAT
AACCEL
TLSTMA
OMEGAI
TBURN2
IVPFLN
IVPFL
ICNT
IACSB2
IACSB1
IRATE
TRDONE
ICOAST
TCOAST
IP2END
TP3END
TP2END
IMCPAS
ANGACL
%

~/INCLUDE/SSDYNO8.DAT
ISK3ON

TMIDB2

IMIDB2

OMEGAO

TVCOMP

ISEQ

L1

~/INCLUDE/SSDYNO9.DAT
XY2LCH
E1]

~/INCLUDE/SSDYN10.DAT
DTZO

DTYO

DTX0

GRLAST

%

~/INCLUDE/SSDYN11.DAT
ISET

GSET

1%

4. Software Development Tools 57

~/INCLUDE/SSDYN12.DAT
GRTPST

FIRSTZ2

%

~/INCLUDE/SSDYN13.DAT
SNRSV

TI2MSV

VRELSV

RRELSV

LAMMSV

TLATCH

NLATCH

%

~/INCLUDE/SSDYN14.DAT
FIRST1

GRTLST

TL1

%

~/INCLUDE/SSDYN15.DAT
LENVCS

THVCS

TMVCS

%

The other output file is given below. The peculiar format is actually the macro language of a
commonly-used programmer's editor called "Brief." This output file can be compiled and run in
the editor to automatically add the necessary include statements back into the source FORTRAN
files. Note that the included filenames correspond to those in the list above. For example, the
macro below will first open the file UUKVAUTO.F and add the FORTRAN statement

SINCLUDE ('~/INCLUDE/SSDYNOL.DAT)

since it knows (from the file above) that ~/INCLUDE/SSDYNOI1.DAT will intialize several
variables that are in fact needed in UUKVAUTO.F. This particular example is not nearly as
interesting as some much longer examples, in which the same file of DATA statements is
included in more than one source file.

Example output file (2 of 2):
(macro insertall

(

(edit_file "UUKVAUTO.EP™)

(search_fwd "= DATA " 0)

(end_of_line)

{insert "\nSINCLUDE('"~/INCLUDE/SSDYNJL.ZAT")™)
(write buffer)

(edit_file “UUACCEL.F")

(search_fwd "* CATA " 0)

{end_of line)

{insert “\nSINCLUDE/'"/INCLUDE/SSDYNO2.Z2AT")1 ™)
(write buffer)

(edit_file “UUACSTHR.F")

(search_fwd "* DATA " O)

(end_of line)

(insert "\nSINCLUCE('~/INCLUDCE/SSIZYNG3.ZAT")")
(write buffer)

(edit file "UUBTHRST.F")

(search_fwd "* DATA " 0)

{end_of_line)

{insert "\nSINCLUDE (*"/INCLUDE/SSOYNC4.ZAT') ™)
(write buffer)

(edit _file "UUGYRC.F")

(searcn_fwd "* DATA " Q)

(erd_of _line)

{insert ™\nSINCLUCE('"/INCLUCE/STIYNZS.CAT"Y™)
(write buffer)

(edit_file "UUKALMAN.F")

(search fwd "* CATA " 0)

(end_of_line)

58 Annual Report: Digital Emulation Tecknology Laboratory Volume 1, Part |

(insert "\nSINCLUDE('~/INCLUDE/SSDYNC6.CAT')"™)
(write_buffer)

(edit file “UUMCAUTO.F™)

(search_fwd "* DATA " 0)

(ena_of line)

(insert *\nSINCLUCZ ('~/INCLUDE/SSDYNO7.DAT')"
(write buffer)

{edit file "UUMCGUID.F")

(search_fwd "= DATA " 0)

(end_of line)

{insert "\nSINCLUDE ('~/INCLUDE/SSDYNC8.DAT')")
(write_buffer)

(edit_file *"UUMISSIL.F"™)

{search_fwd “* DATA " ()

{end of line)

(insert "\n$SINCLUDE ('~/INCLUDE/SSDYNC9.DAT")")
(write buifer)

(edit file "UUNAVIG.F")

(search_fwd "* DATA " 0)

(end_of_line)

(insert *"\n$INCLUDE ('~/INCLUDE/SSDYN1O.DAT")")
(write_buffer)

{edit_File "UUNORM.F")

(search_fwd "* DATA " 0)

(end of line)

{insert” *\n$INCLUDE ('~/INCLUDE/SSDYN11.DAT') ")
(write buffer)

(edit_file "UUOBTARG.F")

{search_fwd "* DATA " 0)

(end of line)

(1nsert "\n$SINCLUDE('~/INCLUCE/SSDYN12.DAT')")
(write_buffer)

{edit_file "UUSSPLAG.F")

(search_fwd ®* DATA " 0)

(end_of line)

(insert "\n$INCLUDE('~/INCLUDE/SSDYN13.DAT')")
(write_buffer)

(edit_file "UUTARGET.F")

(search_fwd "* DATA " 0)

(end of line)

({insert” "\nSINCLUDE('~/INCLUDE/SSDYN14.DAT') ™)
{write buffer;

(edit_file "UUVCSTHR.F")

(search fwd "* DATA " 0)

{(end of line)

{insert "\nSINCLUPE('~/INCLUDE/SSDYNL1S5.DAT' ")
(write buffer)

)

)

The listing of the source code for the varusage utilit ... ' follows. Itis written in PROLOG,
which is not particularly easy to follow if one is nct ..r .ar with the language. PROLOG is
actually quite intuitive, once one understands the progr~.. ‘iow and basic operations, including
the binding of variables. No attempt will be made to expliin PROLOG here.

varusage program listing (PROLOG source code):

/w
Fir « variables used in same sets of €. es, casea
0.. an input file of the form
d("Filel.src","aliasVARa", "VARa", 6 NurRefs)
d("File2.src","aliasVARK", "VARK",NumRafs)

etc.
*/
trace
d~-ma‘ns
tile = datafiler varFile; tatfile
scurcefile, variable, alia: = string
one d a record = d{scurcefile,alias,variac.e,in%eger)

sourcefile*
variable*
alias*

filelist
variablelis®
aliaslist

v

4. Software Development Tools 59

database - v_record

v{aliaslist,variable)
database - d_record

depends (sourcefile, variable)
database - dl_record

dl (filelist, variable)
database - cdl record

cdl {filelist, variablelist)
database - index_record

index (integer)

predicates
fi.e_consult (string)
repfile(file)
assert_new_v(alias,variable)
assert_d_and_maybe_v(one_d_a_record)
build_depend lists
write_depend_lists
merge_same_depends (filelist)
retract_one_cdl(filelist, variablelist)
build_combined depend_lists
write_list(aliaslist)
write_combined_depend_lists
write_one_cdl (filelist, variablelist}
write_vlist w_aliases(variablelist)
write_variable w_aliases(variable)
member (variable, variablelist)
member (alias, aliaslist)
member (sourcefile, filelist)
agcod_sublist(filelist, filelist)
sublist (filelist, filelist)
length(filelist, integer)
union(filelist, filelist, filelist)
append (variablelist, veriablelist, varicblelist)
superset (filelist, variablelist)
form_filename(integer, string)
write flist(filelist, striug)
mergelists

go
clauses
member (X, (Hi_]) :-
X = H.

member (X, [_IT]) :-
member (X, T) .

assert _new v (A,V) :-
/* checks to see if alias prev used */
/* always fails, and assertion occurs pelcw */
v (AL,V1),
member (A, AL),
v <> Vi,
write{"\Warning! Alias ",A," is used zy zozn ",V, " and ",V1i),
fail.
assert new v(A,V) :-
v (AL, V),
member (A, AL),
1

assert_new_v(A,V) :-
retract (v (AL,V),v_record),

ALl = {A | AL},

write("\nWarning! Variable ",V," is known by e2l:ases ",ALl),

assertz(v(ALl,V),v record),

T, /* There are more v()'s, but we oniy need this one */
asser:_newﬁv(A,V) ‘-

assertz (v ([A],V),v_record).

assert d and mayre v{(Term) :-
Term = d(F,A.V,N),
N = 0,
write("\n",Vv,"/",A, " not used in ", F),
1

assert_d_and_maybe v (Term) :-
Term = d(F,A,V,),
ShortTerm = depends(F,V),
assertz(ShortTerm,d_record),
assert _new v (A,V).

file consult (FileNare) :-
openread (datafi.e,FlleName),
readdevice (datafile),

Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

repfile(datafile),
readterm{one_d_a_record, Term},
assert_d_and_maybe_v(Term),
fail.

file consult(_).

repfile(_).
repfile(F) :- not (ecf(F)), repfile(F).

build_depend_lists :~
vi_,V),
findall (S,depends(,V),L),
assertz(dl{(L,V),dl record),
fail.

build_depend_lists.

retract_one_cdl(FL, VL) :-
retract(cdl(FL, VL), cdl_record),

merge_same_depends(FL) :-
4l (FL, V),
retract (dl (FL,V), dl record),
retract_one_cdl{ FL, VL),
assertz{cdl{ FL, [VIVL]}), cdl_record),
fail.

merge_same_depends(_).

build_combined_depend_lists :-
vi_,V),
dl (FL,V),
retract (dl (FL,V), dl_record),
assertz{cdl(FL, [V] },cdl_record),
merge_same_depends(FL),
fail.

build_combined depend_lists.

write_depend_lists :-
d1 (FL, V),
writef ("\n%l0s : ",V),
write(FL),
fail.
write_depend_lists.

write list{(]).

write list ((HIT]) =~
write ("\n", H),
write_list(T).

write variable w_aliases(V) :-
v (AL, V),
write_list (AL).

write vlist w_aliases([]).

write vlist w aliases({H|TVL}) :-
wrlte variable w aliases(H),
write vllst _w allases(TVL)

write flist ([},).
write flist ([(HIT], IncludeName} :-
write(™(edit file \"",H,“\")\n"),
write (" (search fwd \"* DATA \" 0)\n"},
write (" (end_of line)\n"),
write (" (insert \“\\n$INCLUDE('" IncludeName, *')\")\n"),
write (" (write buffer)\n"),
write_flist{T, IncludeName).

form filepame(I,FN) :-
I <10,
str_int (s, 1),
concat ("~ /INCLUDE/SSDYNQ", S, TmpStr),
concat (TmpStr, ".DAT",FN},
1

form filename(I,FN) :-
stz_int(s,I),
concat ("~ /INCLUDE/SSDYN", S, TmpStr)
concat (TmpStr, ".DAT",FN},
1

write one cdl (FL,VL) :-
writedevice (varFile),

retract (index(I), index_record),
!

.

form_filename (I,FName),
write ("\n\n",FName," "),
I1 = I+1,

assert (index (I1)),

write vlist w_aliases(VL),
write("\n%%"),

writedevice (batFile),
write_flist (FL,FName).

write_combined_depend_ lists :-
assert (index (1)),
cdl (FL, VL),
write one_cdl (FL, VL),
fail.
write_combined_depend_lists.

sublist ([}, _).

sublist ([H|IL1], L2) :~-
member (H, L2},
sublist (L1,L2).

length((],0).
length({_IT],X) :-
length(T,Y),
X = Y+1.

good_sublist (L, L1) :~-
sublist (L, L1),
1
length(L,X),
length(L1,X1),
X > 1,
X1 > X,
X1-X < 1.

union({}, L2, L2).
union([X|L1), L2, L3) :-
member {X,L2),
union(L1, L2, L3).
union(({X{L2}), L2, (XIL3}]) :-
union(L1, L2, L3).

append((], L2, L2).
append({Xi{Ll], L2, ([XI|L3]) :-
append(L1, L2, L3).

superset{ FL, VL) :-
cdl (FL1, VL1),
good_sublist (FL, FL1),
append (VL, VL1, VL2),
union(FL, FL1, FL2),
retract (cdl (FL,VL),cdl_record},
retract (cdl (FL1,VL1l), cdl record),

assertz (cdl (FL2, VL2),cdl_record),
1

mergelists :-
cdl (FL, VL),
superset (FL,VL),
fail.
rergelists.

go :-
trace(cff),
openwrite(varFile, "VARUSAGE.TXT"},
openwrite(batFile, "ADDINCL.BAT"),
writedevice (batFile),
write (" (macro iisertallin{\n"),
writedevice (varFile),
file consult("exc.txt"),
build depend lists,
build_combined depend_lists,
]
mergelists,
trace(off),

]
.

assertz (v ("1}, wrtinyy,
write combined depend lists,

write("\n\nMerged lists of dependenclies:

4. Software Development Tonls

61

62

Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

writedevice {batFile},
write (")\n)\n"),
closefile(batFile),
closefile(varFile),
fail.

goal
go().

5. Application Software 63

5. Application Software

During the past contract year, most of the new system software and utilities have been developed
to support current application software, primarily EXOSIM 1.0 and EXOSIM 2.0. This chapter
describes the EXOSIM activity, as well as some preliminary work with LEAP.

5.1. EXOSIM

EXOSIM is the culmination of a series of exoatmospheric simulations, as shown in Figure 5.1.
In this section we will provide a brief overview of the activity which has led up to the current
project in which we are attempting to fully parallelize EXOSIM.

64 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

ERIS Baseline Specifications — LMSC

KWEST Simulation — BDM
ACSL/FORTRAN

KEERIS Simulation — CRC (10/88-2/89)
Boost-phase only
ACSL/FORTRAN

EXOSIM Version 1.0 Simulation — CRC (3/89-6/89)
Post-boost, midcourse, KV phases modeled
All-FORTRAN
BDM staring FPA secker

EXOSIM Version 2.0 Simulation — CRC (7/89-10/89)
Enhanced seeker, IMU
SP/OP algorithms added
Modifications to midcourse guidance and attitude control
All-FORTRAN

Unclassified EXOSIM — Dynetics (1/90-5/90)
Based on Version 1.0
First- and second-stage boost only
Time-driven, not event-driven
Commented for parallel partitioning (up to five processors)

Parallel EXOSIM 1.0 — Georgia Tech (3/90-present)
Based on Unclassified EXOSIM
Boost-phase only
Partitioned for up 1o 27 processors
Ported to high-speed processors
Demonstrated real-time performance
Subsequently used for Ada conversion and benchmarks

Parallel EXOSIM 2.0 — Georgia Tech (10/90-present)

Contains classified data and classified subroutines

Converted from event-driven to time-driven

Eliminated all non-portable features

Midcourse/terminal phase partitioned for 13 processors and
demonstrated running in real time

Comprehensive end-to-end version partitioned for 19 processors and
being ported to FPP/FPX processors

Derivative of end-to-end version used to demonstrate real-time boost-
phase only operation

Figure 5.1: Evolution of EXOSIM

R

5. Application Software 65

5.1.1. EXOSIM 1.0

One of the earlier subcontractors for this work (Dynetics) modified Version 1.0 of EXOSIM,
changing it from an event-driven structure to a time-driven structure. At the same time, it was
made into an unclassified version by replacing the data set and changing two routines. This
modified version of EXOSIM was first implemented at DETL and was described in the annual
report for this task in FY 1990. Briefly, we generated a set of guidelines for partitioning
FORTRAN code on the PFP and described a means of testing the partitions on a single-processor
system. Following these guidelines, Dynetics first produced a first-stage boost version of the
modified EXOSIM, partitioned for four processors. This program is called BOOST1. They then
produced a first/second-stage boost version (BOOST?2), partitioned for five processors. Both of
these programs ran correctly on the PFP, requiring only a simple procedure of splitting up the
main program along documented partitions and adding the appropriate communication
instructions (which is an automated process).

At this time last year (August 1990), we had a 27-processor version of EXOSIM which was
essentially a baseline version for the real-time version to be written for the FPPs. This version
was modified slightly, removing all but one COMMON block. A version suitable for the Sun-
hosted PFP was then developed in several stages. First, in order to reduce the required number
of processors without impacting performance, the three center-of-gravity (COG) modules and the
three moment-of-inertia modules (MOI) were combined into a single COG module and a single
MOI module. Then, in order 1o accomodate the limited data memory of the PFP, the BAUTO
module was split into three modules. This resulted in a 25-processor version.

Since the FPP development relied on the conversion of FORTRAN programs to C, we verified
the operation of the FORTRAN-to-C translator. This was accomplished by translating both the
single-processor and 2S5-processor versions of EXOSIM. The resulting C code for the single-
processor version was compiled and executed on three machines: the PFP host (running RMX
II), a MicroVAX (running Ultrix), and a Sun 4 (running SunOS/Unix). The results were as
essentially the same on each system, verifying the conversion performance. The 25-processor C
version was tested by using the standard C compilers on the RMX II host. The resulting object
code was loaded on the 386 processors in the PFP, and the simulation ran correctly. The single-
processor C code is much too large to run on a single FPP, but the 25-processor C code was
given to the FPP software development group so that they could test their single-precision and
double-precision compilers.

One additional processor was added to the partitioning, creating a 26-processor version that will
henceforth be described as FPP-BOOST?2. This program was modified 16 more times during an
iterative process of developing FORTRAN code on the PFP, verifying correct operation, porting
to C on the FPP PFP, and identifying necessary changes (in order to get it to operate on the

66 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part]

FPP's). By always making the changes in the FORTRAN version, we guaranteed that operation
of the baseline version is tracked. The FORTRAN code was transferred to a Sun machine, where
the FORTRAN-to-C conversion program resides. Afier the C code was generated, it was
transferred back to the RMX-based PFP host and run on the PFP in order to make certain that no
errors were introduced during the translation. At this point, we had a portable C version, suitable
for the FPPs, so the code was transferred to the Sun host. Since the FPP linker does not support
the concept of libraries, all dependencies were explicitly identified. This was done by processing
the map files created by the RMXII binder program, which is equivalent to a linker. The map
files are run through an "awk" filter, generating a makefile which is ready for execution on the
Sun. The process is described in Figure 5.2.

C code
386PFP SUN 386PFP
FORTRAN
code)
map files
makefile
XENIX 310
SUN—HQOSTED
PFP

Figure 5.2: Process of porting Parallel EXOSIM 1.0 to a PFP with FPP boards.

In order to assist the FPP group in debugging their code, a data file was created of all of the
crossbar communication in a successful run on the RMX-based PFP. To some extent, this data
can be used to verify the operation of individual FPPs in the Sun-hosted PFP.

DETL has continued to use EXOSIM 1.0 as a benchmark and as a means of beginning the
transition to Ada. As an exercise in the practical application of Ada to parallel simulations, the
FORTRAN code was converted to Ada manually. An Ada-to-C translator was used to generate
code which could be compiled for the 80386 processors and FPPs.

5.1.2. EXOSIM 2.0

EXOSIM 2.0 has been transferred, in both classified and unclassified versions, to the PFP host,
running under RMX II. The unclassified version is simply a sanitized version of the classified
version, with no attempt to make substitutions for the classified code and data. Because of this,
the unclassified version will not run and is suitable only for compatibility testing (new
compilers). Extensive effort was required to make the single-processor version portable among
several systems, including VAX VMS, VAX Ulinx, Intel RMX II, and (later) the Inmos
Transputer development system. Most of the portability issues 2rose from using VAX extensions
to FORTRAN, rather than adhering strictly to the ANSI FORTRAN-77 specification.

Several non-standard FORTRAN statements were converted. The most significam of these
incompatibilities were the NAMELIST statemcents, now converted to simple assignment
statements through an automated process. We have also changed local COMMON blocks to

5. Application Software 67

local static variables (using SAVE statements) and global COMMON blocks to BLOCKDATA
routines. Also, several built-in functions were changed from VAX naming conventions to
standard FORTRAN-77 names. At the same time, it was necessary to implement certain
functons or subroutines which were not available on the RMX II system, including RAN(),
DREAL(), and DIMAG(.

These changes resulted in classified and unclassified versions which compiled and linked

correctly under RMX H. The classified version runs much as it does on the MicroVAX, but
~ deviations are noticed, beginning around the second-stage separation. We had to make some
corrections to variables which were not initialized correctly. As a validity check for all of the
converted code, we ported it back to the MicroVAX, where it ran correctly.

An additional version of the classified code was also created on the PFP host. In this version, all
I/O is done with standard PFP Host I/O routines, enabling the code to be run on a single target
processor within the PFP. This program behaves just like the host version, as would be
expected. This target version was eventually used as the starting point for partitioning code
among multiple processors.

The hardware I/O structure of the FPP board was not compatible with the original Host I/O
routines (designed for 286 and 386 processor boards). Consequently, they were rewritten in a
manner which allows them to be used with either FPPs or 286/386 boards. This facilitated the
porting of code between these different target processors.

Seeker model 3 was not required for the PFP version of EXOSIM2. Consequently, we
commented out of the mainline the signiticant subroutines and variables used by Seeker model 3.
After these and other minor changes to remove unnecessary variables, the program size dropped
to less than IMB. The program ran on the PFP to completion but failed to hit the target in the
same manner as the host program had earlicr. Some errors were identifiled in NAMELIST
assignments, and the corrected version was compiled for both the VMS and RMX systems. The
simulation resulted in a similar miss distance for both versions. The altitude and timing of some
events were not identical but the simulation seemed to perform correctly. These minor
differences have been attributed to the cumulative effects of slight differences in precision
between systems, and perhaps to different ordering of operations (which is internal to each
compiler).

We modified and recompiled the iRMXII host version of EXOSIM2 to support file 6 (terminal
output) and file 5i (file output). The simulation ran to completion and produced the correct
answers.

The changes made to date to EXOSIM V2.0 were so numerous that we needed a more exact way
to track the changes. We started with the original version (v00) from the VMS system and redid
all the changes creating 11 new versions (vO1 thru v11) of EXOSIM V2.0. Each version fixes
one or more related problems to the program. All of these versions are strictly for a single-
processor system.

68 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

In order to prevent each partition from having to run a large initialization program (DATIN), we
converted the appropriate initializations to DATA statements. We then needed to settle on a
convenient grouping of these statements into files which can be selectively included with various
routines. (If we put all of the DATA statements with each routine, we would have the same
problem we started with -- large memory requirements -- which would cause serious problems
when we eventually use the FPP.) We has wrote a PROLOG program which reads in all variable
dependencies, identifies shared dependencies (variables which are used by more than one file),
and combines identical dependencies (producing groups of variables which are used by exactly
the same file or group of files). By running this program on the EXOSIM dependencies, we were
able to determine if there is a need to combine even more dependencies (based on subsets, as
opposed to simply identical sets).

The PROLOG program "varusage" was run on the actual data dependencies of EXOSIM 2.0.
This identified 83 distinct sets of pre-initialized variables which are used by one or more
routines. The number of variables in each set ranged from 1 to 48 (some of these are actually
arrays), and some sets are used in as many as 8 files. These sets of dependencies were reduced
from an original list of over 560 single dependencies. We then looked at the possibilities of
merging variable sets when one set is a "close” superset of another. By "close" we mean that the
larger set cannot have an excessive number of variables which are not in the smaller set, since
each extra variable is needlessly initialized in one or more routines. When we defined "close"” as
being only one extra variable, "varusage" reduced the 83 sets down to 66. Additional relaxation
of the number of extra variables resulted in much smaller benefits, down to about 58 sets when
four extra variables were allowed. Although the reduction from 83 to 66 is significant, we opted
to stay with the 83 sets, knowing that the code would be as efficient as possible.

A side effect of the work on the equivalence grouping pointed out two program bugs that were in
the original FORTRAN from Coleman. The final result is shghtly different that the original with
a better miss distance. The next version (v15) incorporated the changes in data initialization.
Include statements (referencing files with DATA statements) were inserted in place of the
equivalences and call to DATIN. We found that this version did not run correctly because a few
variables had been modined by scaling factors in DATIN, and some variables were being
initialized outside of NAMELISTs which were EQUIVALENCEd -- the so-called "DYNAM"
variables. Both of these issues were corrccted, and the program then ran without any DATIN
calls (using included files of DATA statcments instead). We also performed an analysis of the
usage of each of the NAMELIST variables to sce how many times each was referenced, if at all.
We then passed this information to the PROLOG "varusage” program, which was modified to
throw out the unused variables before combining them into subsets. This reduced the number of
include files down to 70 (from 83). This version (v18 for the host, v18.pfp for a single target
processor) became the basis for our parntitioning efforts.

We ran our utility program to check for variables which were referenced before they were defined
and found over thirty such variables. Thesc were then initialized to zero, which was the apparent
intent of the original programmers, in order to make the code more portable.

5. Application Software 69

This same version was converted to an unclassified foim by removing all data, as well as the
classified routines. It was then modified to make it suitable for the FORTRAN-to-C translator
and thus the FPP compiler. In summary, the v18 version of EXOSIM?2 was tested and validated
on the Ultrix machine, the iRMXII host, and a PFP 386 processor. We translated the unclassified
FORTRAN (v18) into C and then compiled all but the mainline. It was then clear, from the
code and data sizes, that getting the simulation to fit on the FPP/FPX would be a major problem
unless we converted much of it to single precision.

Later, the single-processor version was benchmarked on four processors: an Intel 286 (on an 8
MHz 286/12 board), an Intel 386 (on a 20 MHz 386/12 board), an Inmos T800 (using the 20
MHz SSE host), and a DEC MicroVAX II. The 386 and the T800 were almost twice as fast as
the MicroVAX and over four times faster than the 286. Code sizes were similar, with the T800
being slightly larger than the rest, and simulation results (as measured by miss distance) were
similar, but not identical, as has been noted before.

After some attempts at running a two-partition version of v18, Richard Pitts and Philip Bingham
began to concentrate on partitioning only the midcourse/terminal portion of EXOSIM. This post-
boost version can only start from a specific set of post-boost data values. Steve Wachtel and
Tom Collins continued to partition an end-to-end simulation.

The general strategy for partitioning EXOSIM is given in Figure 5.3. This illustrates the major
functional elements of the simulation, which are capable of running in parallel most of the time.
At a higher level, this couid be viewed as three main functional elements: the environment, the
target, and the interceptor, where the interceptor is composed of four sub-blocks. These six
blocks are further subdivided to extract enough parallelism for the system to run in real time.

Environment Target

Sensors

Interceptor Onboard
dynamics GN&C

Thrusters

Figure 5.3: General partitioning strategy for EXOSIM 2.0

70 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

The following sections describe the various partitioning stages of the end-to-end version of
EXOSIM 2.0, beginning with the single-processor version SSV18.. Each step resulted in a new
version, named SSVxx.yyz, where "xx" is the major version number, yy is the number of
processors (partitions), and z is a letter *o distinguish between multiple versions using the same
number of processors, but differing in some other aspect..

5.1.2.1. SS§V19.3

The two-partition version developed by Richard Pitts and Philip Bingham was investigated, but
we leamed that it would not run to completion even if the partitions were run serally.
Consequently, we started over from the single-processor (v18) version, keeping the partitioned
code as close as possible to the original. It made the most sense for the initial split to be
between the "truth" model (modelling the physical dynamics of the vehicle and target) and
everything else (basically the sensor processing, guidance, navigation, and control).

Our partitioning was along these lines, with system dynamics ("truth states") on one processor
and sensors, guidance, navigation, and control on the other. We also split out the output function
into a third partition. The main difference between this partition and the earlier version was that
we did not split up VCSTHR and ACSTHR, and we did not alter FRACS or FRCTHR. We
examined the usage of the variables which were used in both partitions (this is what made Philip
Bingham decide to alter his routines), and we determined that most of these variables are really
controlled by the GN&C partition (as they should be). The dynamics partition simply modifies
some of the variables for local use. A less significant difference was that we placed the GYRO
and ACCEL routines in the GN&C partition. These could easily go either way, since sensors can
Jjust as easily be considered as part of the dynamics or of the GN&C system, but the structure of
the single-processor version favors the chosen placement of these routines.

In many of our earlier simulations, we scheduled all interprocessor communication either at the
beginning or the end of the integration timestep. This is consistent with a programming model
where only state variables (or only derivatives of state variables) niust be communicated. When
there are many intermediate variables calculated by algebraic means or by tables, as in the case of
EXOSIM, this strategy results in the communcation of variables at inappropriate times,
introducing artificial delays and requiring false initialization. This had been attempted by Pitts
and Bingham and was probably the main reason that they were unable to get two partitions
running in parallel. We began adhering strictly to sending values at the correct times, even
though this resulted in the communications being spread throughout the code. The only real
problem with this is that it prevented us from using the utility programs which automatically
generated the sends and receives, but it provided greater promise of speedup while still retaining
the fidelity of the original single-processor version.

5. Application Software 7

This new three-processor partition was designated as "SSV19.3". After creating all required
communication calls, we compiled and ran this version. It ran to completion with no errors.
SSV19.3 runs about 15% faster than its predccessor, due probably to a better load balance
(movement of GYRO and ACCEL) and to the addition of the small third partition.

5.1.2.2. SSV19.5

We then developed a five-partition version. During this same period, we began developing some
. additional tools to aid in the automatic generation of crossbar code, which we tried on
intermediate versions of EXOSIM. With EXOSIM now divided into several partitions of clear
physical significance (missile states, target/relative states, IMU, GN&C, and output), we began
to concentrate on speedup. Staying with five-processor versions, we first made good use of the
first-order (Euler) estimates of the state variables which are calculated at the beginning of each
missile state update section. These were sent instead of the values calculated at the end of the
loop. The only difference here is the degree of approximaton (Euler vs. trapezoidal) and the
derivative estimates. This version ran fine, actually improving on the miss distance, which by

blk00

MISSIL, MASSPR, BTHRST,
NCU, FRCTHR, VCSTHR,
ACSTHR, ATMOS, AERO,
TARGET, RELAT

blk02

OUTPUT

bikO1

GYRO, ACCEL, IMUPRO,
NAVIG, OBTARG, ESTREL,
CORVEL, BSTEER, BGUID,
MCGUID, SEEKER, SSPLAG,
KALMAN, BAUTO, FRACS,
MCAUTO, KVAUTO,
VCSLOG, RESTHR

Figure 5.4: 3-partition version of EXOSIM 2.0

72 Annual Report: Digital Emulation Technology Loboratory Volume 1, Part 1

itself is only a rough indication of pcrformance. There was about a 10% speedup due to this
change.

We then turned to what we consider to be an crror in EXOSIM. It does not make sense 1o
perform any type of integration at the beginning of the loop, in either a serial or parallel version.
The prescnt-state information should be adequate for the calculation of all derived variables,
including state derivatives. We deleted the first-order estimates and began sending the most-
recently-calculated state variables at the beginning of each missile state update. This version is
about 30% faster than the previous version, at least during first-stage boost, and miss distance
was again reduced (by more than half). This improvement could be due to the fact that the
GN&C routines are now receiving the present states (as they should), rather than some
extrapolated next-states.

5. Application Software 73

As an aside, we uncovered threce morc crrors in the original EXOSIM code. Three variables
(TL2, TONAY, and TGIL) are used in the mainline (cither as direct assignments or formal
parameters) and are also used within COMMON blocks within subroutines. This sort of hidden
interaction was supposcdly eliminated in EXOSIM 2.0.

blk0O

MISSIL, MASSPR, BTHRST,
NCU, FRCTHR, VCSTHR,
ACSTHR, ATMOS, AERO

bik04

TARGET, RELAT
G blk02

OUTPUT

blk03

GYRO, ACCEL,

IMUPRO, NAVIG

bik01

OBTARG, ESTREL,
CORVEL, BSTEER, BGUID,
MCGUID, SEEKER, SSPLAG,
KALMAN, BAUTO, FRACS,
MCAUTO, KVAUTO,
VCSLOG, RESTHR

Figure 5.5: S-partition version of EXOSIM 2.0

74 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.3. SSV19.6

We began to focus on the second-stage boost, isolating the computational slowdown to BAUTO.
As a rough estimate, BAUTO was about 4-5 times slower than any other candidate partition, and
it showed little promise for being split up. (Actually, it made sense for it to exist in the same
partition(s) as MCAUTO and KVAUTOQ, since these routines substitute for each other as time
passes.) The problems do not arise from table lookups, as may have been a problem with
EXOSIM 1.0, but ate due to the calculation of optimal gains, which requires that a discrete
model of the missile dynamics be derived, followed by computation of the eigenvalues and
eigenvectors (with a great deal of matrix manipulation along the way). Also at this time, we
began to perform an extensive timing analysis of the single-processor version.

We then split out a single autopilot partition (for all three autopilot routines), resulting in a six-
processor version whose output is identical to the five-processor version, since no reordering of
computation had taken place. We had originally planned to improve the speed of BAUTO and
perhaps reorder some communications, but as we looked at the optimal gain calculations in
BAUTO, we began to doubt their feasibility, not only for real-time simulation, but also for flight.
In addition to taking a very long time on the average, there is the possibility that in isolated
cases, the routines may not arrive at a solution at all. Perhaps we could spend some time trying
to improve the control algorithms, but we deferred this until we have the rest of the simulation
running real-time. For this reason, we took a shortcut around the BAUTO problem. Noting that
the variation of the plant model (and therefore the optimal gains) depends mostly on atmospheric
properties and the changing missile mass, we attempted to fit curves to each of the three optimal
gains as a function of altitude. Using Mathematica and Excel, we arrived at two second-order
polynomials and an exponential/second-order polynomial for the three gains.

5. Application Software 75

The gains could then be computed very quickly, and the missile performance was nearly identical
as far as miss distance was concemed. (The sccond-stage boost ended at slightly different spatial
coordinates, but not enough to make any significant difference in the remainder of the flight.)
This somewhat alleviated the need to rcorder communications or “cheat” in any way to
accomodate BAUTO, since the critical path shifted to other routines.

We began to use Gannt charts from Microsoft Project by manually inserting timing routines in
the code, then entering the results into Project manually. We ther: began to automate this process
so that we could analyze the critical path with each successive partiion. We determined that it
was possible to use the file import features built into Project. We needed a preprocessor that

blk0O

MISSIL, MASSPR, BTHRST,
NCU, FRCTHR, VCSTHR,
ACSTHR, ATMOS, AERO

blk04

TARGET, RELAT
blk02

OUTPUT

blk03

GYRO, ACCEL,

IMUPRO, NAVIG

blk05

blk01

BAUTO,

OBTARG, ESTREL, CORVEL, FRACS,
BSTEER, BGUID, MCGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO,

RESTHR VCSLOG

Figure 5.6: 6-partition version of EXOSIM 2.0

76 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

analyzed the FORTRAN blocks, inserted timing routines, and kept track of all computation and
communication segments, as well as a postprocessor that merged the PFP output with the
dependency information. All computation blocks and send routines are considered as distinct
events, while receives show up as dependencies (i.e., a computation cannot take place until a
receive takes place). We were able to successfuliy generate the Project information for
SSV19.6, but we continued to refine the format and methodology as we proceeded to partition
EXOSIM. Some of the iming charts are presented later, beginning with version SSV20.10A.

5.1.2.4. SSV19.7 and SSV19.8

Our seventh block was created by pulling out the atmosphere-related calculations, including
ATMOS, AERQO, and the computation of altitude and related coordinates. Our eighth block was
created by pulling out all of the thrusters (for all phases of flight). Up to this point we were still
able to run all routines in the correct order while achieving some significant overlap, but we felt
that we should begin to use estimated values for slowly-varying variables when it allowed for
more parallelism. We made another eight-processor version which used approximate values for
QA, MACH, and PRESS and found no significant change in the output, but this allowed the
thruster models to run sooner. We made gradual timing improvements and broke the 10-times-
real-time milestone, at least for first-stage boost (where our most recent efforts had focused).

5. Application Software 77

5.1.2.5. SSv20.8

We developed a new major version, SSV20.8, an eight-processor version which had most
COMMON blocks removed. We experimented with different levels of optimization and the use
of 387 instructions and found that we were able to use the latest Intel FORTRAN compiler at its
highest level of optimizaton, but we are only able to reliably use the 287 floating-point
instructions (not the faster 387 instructions). We then converted most integer calculations to
two-byte integers, which saved some time without adding another partition. These and other
related changes resulted in versions SSV20.8a, SSV20.8b, SSV20.8¢, and SSV20.8d.

blk06
ATMOS,
blk0O AERO
MISSIL,
MASSPR olko7

BTHRST, NCU,

FRCTHR, VCSTHR,
ACSTHR

blk04

TARGET, RELAT

blk02
blk03 OUTPUT
GYRO, ACCEL,
IMUPRO. NAVIG
Ik
bik01 blkos
BAUTO,
OBTARG, ESTREL, CORVEL, FRACS.
BSTEER, BGUID, MCGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO.
RESTHR VCSLOG

Figure 5.7: 8-partition version of EXOSIM 2.0

78 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.6. SSV20.9

We created a nine-processor version, SSV20.9a, by splitting MISSIL into two routines, one for
the translational dynamics and one for the rotational dynamics. This worked very well, shifting
about 40% of the MISSIL calculations out of the critical path. We continued to use Microsoft
Project for the critical path analysis and made some refinements to the dependency information.

’ MISSILR | ATMOS,
AERO
blkoo
MISSILT, bIkO7

MASSPR

BTHRST, NCU,
FRCTHR, VCSTHR,

ACSTHR

blk04

TARGET, RELAT

blko2
blko3 OUTPUT
GYRO, ACCEL,
IMUPRO, NAVIG
bik0S
biko1
BAUTO,
OBTARG, ESTREL, CORVEL, FRACS.
BSTEER, BGUID, MCGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO.
RESTHR VCSLOG

Figure 5.8: 9-partition version of EXOSIM 2.0

EXOSIM 2.0 V20.10A (Stage 1)

Name

1 project exosim

1.1 program blk00

1.1.13 computation ?

1.1.15 computation ?

1.1.17 computation masspr

1.1.23 computation integ

1.1.24 computation integi.integ,missit

1.1.25 computation ?

1.2 program blko1

1.2.1 computation mcguid, bguid,bstaer,«
1.2.12 computation kalman,ssplag,seek:

1.2.24 computation ?

1.3 program blk02

1.3.1 computation cutmes

1.4 program blk03

1.4.1 computation gyro
1.4.2 computation navig,imupro,accel

1.4.12 computation ?

1.5 program bike4

1.5.1 computation target
1.5.5 computation relat

1.5.12 romputation ?

1.6 program blk0S

1.6.1 computation sthr,veslog kvauto,r V

1.6.23 computation ?

1.7 program btk06

1.7.1 computation mmk
1.7.3 computation ?

1.7 5 computation atmos
1.7 7 computation aero

1.7.16 computation ?

1.8 program bik07

1 8.1 computation bthrst
1.8.9 computation frethr,ncu
1.8.17 computation vesthr
1.8.25 computation integ

1.8.26 computation ?

1.9 program bik08

1.9.8 computation integ,missir

1.10 program bik09

1.10.1 computation acsthr

1.10.10 computation ?

Figure 5.9

80 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.7. SSV20.10

We then created a ten-processor version, SSV20.10a, by separating VCSTHR and ACSTHR.
These have no cross-dependencies, and VCSTHR was thus removed from the critical path. We
also improved the efficiency of MMK by rewriting the ROTMX subroutine.

The timing of this version is illustrated in Figure 5.9. This chart (and all of the ones which will
follow) shows the timing of a single integration step averaged over a particular phase of flight.
This particular timing chart is for stage 1 (boost phase), so it does not clearly show the
motivation for the tenth partition, since both ACSTHR and VCSTHR are not very time-
consuming during this portion of flight. It does clearly show the effects of many of the earlier
partitions, including the ninth partition, in which the rotational missile states (MISSLR) were
split from the translational states (MISSLT). Note that MISSLR and MISSLT run concurrently.
The critical path in this iming chart is shown as a solid bar, containing GYRO, MMK, ATMOS,
BTHRST, FRCTHR, NCU, VCSTHR, INTEG, AERQ, MISSILT, and the autopilot routines.
This indicates what areas can be targeted in subsequent partitioning, and we chose to work on the
long ATMOS computation.

5. Application Software 81

5.1.2.8. SSV20.11

We created an eleven-processor version by splitting ATMOS into two routines, one which
performs four table lookups and one which performs just two lookups, followed by some
extensive computation. This was done without changing the results in any way, since the new
partition was truly capable of running concurrcntly. The timing of this version is shown in

blk08 blk06
MISSILR I ATMOS,
AERO
blk00
M|SSILT, blk07
MASSPR
BTHRST, NCU,

blk04

TARGET, RELAT

FRCTHR, VCSTHR

blk09

ACSTHR

blk03
blk02
GYRO, ACCEL,
IMUPRO, NAVIG OUTPUT
blk05

blkO1

OBTARG, ESTREL, CORVEL, FRACS.

BSTEER, BGUID, MCGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO.
RESTHR VCSLOG

BAUTO,

Figure 5.10: 10-partition version of EXOSIM 2.0

82 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

Figure 5.12. Again, this timing is for the first stage of flight, which was our primary focus at the
time, although we analyzed each of the three major stages (boost, midcourse, and terminal).
Note that the ATMOS1 computation begins at the same time as ATMOS2 and that the relative
length of ATMOS is thus reduced from the previous version.

This and all of the remaining timing diagrams presented here include duration figures. The basic
unit is abbreviated "m" for minute, but this is a misleading carryover from the project-planning
software, which provides for no smaller units of time. Actually, an "m" is a tick of our 286/12
or 386/12 boards' onboard timers, and should be thought of simply as an indication of relative
time. The timing is described hierarchically, with thinner bars which span the various
computations required to implement each partition, or "program.” These thinner bars have
durations given in elapsed minutes, or "em,” which are really no different than regular "minutes”
(timer ticks), except that they include idle time during which a program is waiting for data. Time
is also allowed for communication of values, but this is not shown on the timing charts, since it
makes them very large and does not provide much useful information. Some of the apparent idle
time, however, is actually due to communication which has been filtered out of the charts.

5. Applicaton Software

blkn8
blk10
MISSILR
ATMOS1
blk00O

MISSILT, bIkO7

MASSPR

BTHRST, NCU,

FRCTHR, VCSTHR

blk04
Ik
TARGET, RELAT blko9
ACSTHR I
blko3 blk02
GYRO, ACCEL,
IMUPRO, NAVIG OUTPUT
blk05
blkO1 -
BAUTO,
OBTARG, ESTREL, CORVEL, FRACS.
BSTEER, BGUID, MCGUID, MCAUTO,
SEEKER, SSPLAG, KALMAN, KVAUTO.
RESTHR VCSLOG

Figure 5.11: 11-partition version of EXOSIM 2.0

83

EXOSIM 2.0 V20.11A (Stage 1)

Name J Duration —
1 project axcsim 64560m T l !
1.1 program bik00 6456em T ‘ | "
1.1.13 omputation 8m , ; : |
11,13 compuaation 87m | ; ' } ‘
1.1.17 computation masspr S44m] ' ‘ ; i
1.1.23 computation integ 415m — E : I i .
1.1.24 computation miss integ,integi 1570m ‘ ; . ,
1.1.25 computaon 45m i i j , &
1.2 program bik01 928 | vl—-—-—l-' '
1.2.1 computation obtarg, ssirel.convel, betear,bgl 32m — | i
1.2.12 computanion sesker,ssplag kalman w@ni o 1
1.224 computation s6m o
1.3 program bik02 182em —— i
1.3.1 computation outmes 191m — .
1.4 program M3 4384em :
1.4.1 computation gyro 215m| { lg
1.4.2 computation accel,imupeo.navig 2520m Ty ﬁ
1.4,12 compusation o) ‘
1.5 program bx04 1030em e v ‘
1.5.9 computanon targe sl ;[__ ' |
155 computation relat %6m N I —— "
1512 computaton 4om 1o ‘ :
1.8 program HkOs 438em N —
161 computation bauto fracs meauto jvauto v 20m| | ,=1 i
1.8.23 compuation s&m o i
1.7 program dik0s 46B83am { !
1.7 1 computation mmic o61m : i
1.7 computanon 45om —F : '
1.7.5 compuiation amos2 1914m
1.7.6 computation sero 1228m
1715 computazon I = } L
18 program 0T 4635am v
1.1 comgutation bihrss saIm —
1.8.9 computation ncu, frcthe 122m fowe .
1.0.17 computation westhe 4am L
1.8.25 computaton integ 219m f—]
1.8.26 compuaanon Om a
1.9 program b&o08 5365em ‘ :
1.9.8 computadon mus integ 1040m ! ‘ — ;
110 program biog 71 . ‘ i
1101 computation acsthe 4m o !
1.10.90 computason o o :
1.1 program bi10 so7em| —— 1
1.41.1 computation smos? “em — !
1.11.5 computation rea A { ' E

Figure 5.12

-—--i------’h

5. Application Software 85

5.1.2.9. 5§V20.12

GYRO and ACCEL were split into separatc partitions to make the twelve-processor version.
Although these routines were not part of the critical path during stage 1 (because of the
dominance of atmospheric considcrations), they become problematic later in flight.

We continued to use our critical path analysis tools based on Microsoft Project. We began using
idealized communication times, rather than measured times, since it should be possible to reorder
the communication to achicve better-than-measured times. We delayed this manual reordering
until we had a version which theoretically could run in real time. A timing chart for stage 1
(boost-phase) is shown as Figure 5.14. The parallel operation of ACCEL and GYRO is evident
in the timing diagram, allowing IMUPRO and NAVIG to begin earlier.

86 Annual Report: Digital Emulation Technology Laboratory Voiume 1, Part |
blk08
| blkos blk10
MISSILR
S8 ATMOS2,
L_.I AERO | ATMOSH
bik00

MISSILT, bIkO7

MASSPR

BTHRST, NCU,

FRCTHR, VCSTHR

blkQ4
TARGET, RELAT
blk11
blk03
ACCEL,
GYRO IMUPRO,
NAVIG
blkO1

OBTARG, ESTREL, CORVEL,
BSTEER, BGUID, MCGUID,
SEEKER, SSPLAG, KALMAN,
RESTHR

blk09

ACSTHR I

blk02

OUTPUT

bik05

BAUTO,
FRACS
MCAUTO,
KVAUTO,
VCSLOG

Figure 5.13: 12-partition version of EXOSIM 2.0

EXOSIM 20 V20 12A (Stage 1)

T
Name l Ouration
1 pro.ct exokim 6457em i M
1 1 program 00 §457em : !
1113 computation arm ‘)
1115 computation 8m 1
1117 computation masspr em] 1 :
1.1 23 computation integ 415m —_— 1‘ :
11 24 computation misst inleq, ntegt 1570m .
! 1 2% computation &9m | I ! ; -
1.2 program b0t 963em ‘ - i
121 computation oblarg gsirai corvel 25m : — | ‘
1.2 2 computation bsteer bouid. meguid 122m E (e ‘
1 213 computaion seaker ssplag kalman 48m i [s] { t
1 2 25 computanon S6m EI D :
17 program kG2 192em | — E ‘}
131 computation outmes 19tm | — } ’
1 & program b%23 2367em v i
1 & 1 computation gyro 2306m -] |
1.4 3 computation 49m o j)
1 5 program bik04 1030em |
1.5 1 computation target 8m — ;
1.5 5 computation relat 266m —
1.5.12 computation 49m o)
1.6 program bOS 438em hm—
1.6.1 computation bauto, iracs,meauto kvauto, 4im —
1 6.23 computation 55m =] i
1 7 program bik0é 46340m v |
1.7.1 computation mmk 962m !
1 73 computaton 459m ——— i
1.7 5 computation aimos2 191dm ‘
1.7 6 computation aero 1228m i
1718 computation 4om | o B L]
1.8 program biko7 1604em T r 7Mu_f
181 computation bihrst 681m e ‘
1.8 9 computation ney. frethr 122m [,
1 8.17 computation vesthr 4m d !
18 25 computation imeg 219m —
1 8 26 computation 45m o ’
1.9 program biko@ 5866em | !
19 8 computation missir,integ 1040m | :T-—“——:‘J:’ ’
1 10 program k09 1930em v ‘
1121 computation acsthr $im o i
1.10.10 computation 49m b !
1.1 program bix10 S07am Py .
1 11 1 computation amos! 446m — i
1 115 compuration 4gm - |
1 12 program bk11 3026am hg v ’
112, computation accel 817m =F——:' !
112.2 computation imupro.navy 1743m c :
11212 computation 40m I l o l

Figure 5.14

5. Application Software

blk08
| blkoé blk10
| MISSILR l
Ssit ATMOS2,
AERO ATMOST
blk0O

MISSILT,

MASSPR

blk04

TARGET, RELAT

blk07

llc1 1
blk03 b
ACCEL,
GYRO IMUPRO,
NAVIG
blkO1

CORVEL, BSTEER, BGUID,
MCGUID, SEEKER, SSPLAG,
RESTHR

bik12

OBTARG, ESTREL,

KALMAN

BTHRST, NCU,

FRCTHR, VCSTHR

blk09

ACSTHR I

blk02

OUTPUT

blk05

BAUTO,
FRACS,
MCAUTO,
KVAUTO,
VCSLOG

Figure 5.15: 13-partition version of EXOSIM 2.0

89

Figure 5.16

ey
EXOSIM 20 V20 13A (Stage 1) l
Name Duration
1 project axosim 64560m | | : ‘ | .

11 program bik00 B4560m i ; I
11 13 computation 87m 1 | ; ’
1118 computation o | | ‘
1117 computation masspr Sddm)

11.22 computation integ 415m c— | '
1124 computation missh Intag,ntege 1570m ! : s i—
1125 computaton 49m i r 'l []

1.2 program bikot 4721em v
1.2.1 computation om o !

1 2.2 computation bstes.bquid 121 = '
1.2.5 computation 49m i o '

1.3 program bik02 192em MRR |
1 3.1 computation outmes 191m i:: j

1 ¢ program bikG3 2367em ’ '
1.4.t computation gyro 2308m J —

1.4.3 compitation 40m o

1.5 program bikod 1030em d i
1 5.1 computation target 487m —

1.5 5 computation relzt 265m I:J :1 ! '
1512 compitation 4om 0 .

1.6 program bixos 4380m — i
1.8 1 compisation baito,fracs 7 1cauto, kvauto, Atm [s i
16 23 computation 55m : '

1 7 program bik06 4683em E '

1 7.1 computation mmk 962m i 1
1.7.3 computation 450m a—— '
1.7.5 computation atmos2 i91dm .
1.7 8 computation sero 127m !
1715 computation 49m l {

1 8 program W07 775em v ; '
18 1 computation bitwst &im — '
1.8.9 computation neu, frothr 12m o
18,17 computation vesthr 4im J
1.8 25 computation Integ 210m [—]

1 8 26 computation 49m 1 {

1.9 program bikoa 5865em 1 [:
1.9.6 computation missir integ 1040m ' t:.:::“::

110 program bik09 181tem v i '
1.10.1 comgutation acsthr Hm a i |
110.10 computation 4om

1.1% program bik10 507em ————

1111 computation aimos | Uem = (
111 8 computation 49m JI’

1.12 program bk11 3023%em I F
112.1 computation accel 817m —

112 2 computation imupro navig 1743m c— i
11212 computation 46m] :

113 rogram din!2 842em b E— .
1 13.1 computation obtarg, estrel corvel 201m —c ;
1 1.2 computation meguid 4Om o i
113,11 computation seeker ssplag,kaiman 48m b 1
113 25 computation 386m :

5. Application Software 91

5.1.2.11. SSVv20.14

The fourteen-processor version was created by separating AERO into its own partition. As scen
in Figure 5.18, this removed a substantial amount of computation from the critical path in the
"blk06" partition, reducing the total simulation time by almost 20%. As noted earlier, these are
still idealized times, based on actual compute times and theorctical communication times. We
were able to use the project-planner timing charts, however, to create optimal orderings of
communication for each stage of the flight. This informaton was used to generate
communication priorities that were fed into the crossbar/sequencer code generation utility
program. Wherever possible, the optimal ordering was made (if it did not result in an invalid
ordering on anyv single processnr) We «rill nlanned to make some chaiiges w0 un unividia
sends and receives in a later version in order to more closely match the optimal ordering, at least
for one phase of flight.

92 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1
blk13
blko8s AERO

’ MISSILR I 6106
blk10
ATMOS2

MISSILT, bIkO7

MASSPR

BTHRST, NCU,

FRCTHR, VCSTHR

blk04
\ k09
TARGET, RELAT biko
{ACSTHR I
k11
blk03 F
ACCEL, blk02
GYRO A
W | o
bikO1

CORVEL, BSTEER, BGUID, blk05
MCGUID, SEEKER, SSPLAG,
RESTHR

BAUTO,
FRACS,
MCAUTO,
KVAUTO,
VCSLOG

blk12

OBTARG, ESTREL,

KALMAN

Figure 5.17: 14-partition version of EXOSIM 2.0

EXOSIM 2.0 V20.14A (Stage 1)

Figure 5.18

Name Ouration . T
1 project exosim Sa23em | |
1 % program k00 5223em | | !
1113 computation 8m] o ; , A
* 1.15 computation 8m =) ! |)
11 17 computation masspe 49m -]) %
11 23 computabon infeg 416m —t t ‘
1.1 24 computation mrsai aeg integh 1543m : ; L
1 1 25 computation 49m i [l ‘
1.2 program b0t 4T24em
121 computation Tom Iy |
1 2.2 comoutation beteer.bguid 12tm [} :
1.25 computation 49m a |
1 3 program bik02 192em ——
131 compualion cutmes 191m s
1.4 program bk0d 268em | *
1.4.1 computation gyro 20im| —— —
1 4.3 computation &Om o | |
1.8 program bko4 10308m -— | |
1.8 1 computation target 487m e '
15 5 computation relat 266m = ;
1.5.12 computation om o ,
1.6 program bik05 438am — i
1 8.1 computation dauto, fracs meauto, kvauto.va Wim s '
1.8.23 computation 85n o] :
1.7 program dIk08 Midem - {
1.7.1 computation mmk 61m |
1.7.3 computation 453m ———— | !
1.7.5 computation &imos2 1910m 1 ‘
1 7.8 computation 4o ; .
1.8 program b&O7 377em - v ‘L ‘
1.8.1 computation bitwst 6atm e o L
[789 computation ncu, rethr 122m = l .
1.8.17 computation vesthr 38m ! 1
18,28 computation Integ 21m P :
1 8.28 computation 49m o ‘i x
1.9 program b08 4681em End |
1.9.8 computation missk jmtag 1042m —————l—| I
1.10 program bikoR 3807em \e v 1
1.10.1 computation acsthr 4m n [;
1.10.10 computation 4om o i i
§.11 program bk10 Sobem PE—
1.11.1 comptsation aimos 1 usm —
1.11.5 omputation 49m Jﬁ
1.12 program b1 202em - '
1,121 computation sccel 816m ‘—;_J-:,
1.12.2 compuiation Imupro.navig 1744m C
1.12 12 computation 40m a
113 program bk12 843em ——r——
111 1 computation oblarg. estrel corvel 202m —
1.13.2 computation meguid Qm o i
113,11 computation sesker sspiag,kaiman 42m o} 1
1.13 25 computation %8m o 1
1 14 grogram bix 13 241 1em !
1.14.) computation aero t2im — l -—
1 14.10 computation 49m I ')

94 Annual Report: Digital Emulation Technology Luboratory Volume 1, Part |

5.1.2.12. SSV20.15

The iifteen-processor version was credted by splitting ACSTIHR inio two routines. While the
previous split was made 0 alleviate the critical path in boost-phase (the AERO partition), this
one was for the benefit of the midcourse/terminal phase (the ACSTHR partition). This sort of
partitioning is typical of the problems associated with an application whose structure changes
during a run — what benefits one phase of the run may not benefit another pnase. In order to
better illustrate the effect of this partitioning, timing charts for stage 3 (terminal phase) arc
provided here for both before (14-processor) and after (15-processor). (The previous 14-
processor timing chart was for stage 1 only.) Figurc 519 is the timing of thc 14-processor
version , and Figure 5.20 is the timing of the 15-processor version. Note that the ACSTHR
computation falls out of the critical path completely as a result of thus new parudon. The total
simulation time seems to increase, but that is only the result of using a more conservative value
for each of the individual communication times,

A timing chart of stage 1 of this partitioning is given in Figure 5.23. This provides a comparison
with the earlier charts, which were all for stage 1, as well as the charts which are to follow.

EXOSIM 2.0 V20 14A (Stage 3)

Name [Ouration — __.__
1 project axosim 56108m 1 :
11 program bik0o 5510em] j
1113 computation a7m | :
1.1.15 computation 88m i .
1117 computation masspr 458m ! : .
1.1, 22 computation integ at6m L, i ; ’
1.1.24 computation miss integ.Intagi 1553m ' ‘ :
1.1.25 computation 49m ! ‘L
1.2 program bikC! 45200m v I
1.2.1 computation m !
1.22 computation bsteer,bouid 4Im o \ :
1.25 computation 49m o
1.3 program bik02 192em — 1
1.1 computation outmes 191m ‘ l
& program bIRO3 2363em
1.41 computation gyro 202m - '
1.4.3 computation 9m a }
1.5 program bikod 1027em v v i
15.1 computation target 4Tm —t
1.5.5 computation reia 2m = i
1.5.12 comptation i9m a |
1.6 program bx0S gem| — !
1.6.1 computation bauto, frace, meauto kvauto,ves 12m = I
1.6.23 computation 85m ¢ i
1.7 program bk0S 1565em |
1.7.1 computation mmk 98im
1.7.3 computation 450m o !
1.7.5 computation wmos2 4tm o |
1.7.9 computation @m o
1.8 program 07 4340em
1.8.1 computation bitrst sim
1.9 computation o ircthe sam G
1.8.17 computation vesthr 1684m)
1.8.25 computation integ Sim o
1.8.28 computation 4m o
1.9 program biko 5032em - '
1.9 8 computation missir Irteg 1043m e———— :
1.10 program dk0§ 4376em !
1.10.1 computation acsthr %m !
1.10.10 computation 49m d i
1.11 program bik10 102em Ll i
1.11.1 computation simos | 4im o
1.11.5 computation om o
1.12 program bikt t 3520em -
1.12 1 computation sccel 818m 3
1.122 computation imupro.navig 1754m — 3 l
1.12.12 computation 49m o :
1.1 progeam bik12 9168m !
113 1 computation obtarg, astrel corvel 182m — {
1132 computation ~=quid Tam o '
1.13.11 computatio.. ;eeker sspiag, kaiman 228m — i
11328 computation sTm c |
114 program d%13 10240m l
1141 compuration sero 5m | l
1.14.10 computation 49m a i |

Figure 5.19

EXOSIM 2.0 V20 15A (Stage 3)

mem

- . 4 .

Name
! project excsien 6511em + T :) -~
1.1 program HMO0 56640m E i ' ; h
1.1 13 computation 88m i . }
t 1.1 computation 8m] 1 "
1.1 17 computation masspr 458m ——]l T ‘
1 1.23 computanon imeg Hrm —t | :
1.1 24 computation missh integintegi 1553m ; 1
11.25 computation 5om | l ; ;
1.2 program b0t 5877em . i
1.21 computasicn nm j] :
1.2.2 computation beteer, dguid &7m i o : ‘
1 2.5 computation 49m g E f
1.3 program dk02 195em | Ao
1.3.1 computation outmas 91m ,I L‘;:l]‘
1 4 program bkad 2400em :
1 4.1 computation gyro 2304m ‘?
1 4 3 computation 48m o | \
1 5 program diko4 170%m — | ‘
1.5.1 computation target | cm— }
1.5.8 computation relat 23m :
1.5 12 computaion 49m o} i
t 8 program bikos T45em —
1 6.1 computation bauto, fracs meauto kvauto, vor 122m -
1.8.2 computation 55m :
1 7 program bko§ 1720em v i
1.2.1 computation mmk wm !
1 73 computation 4som — i
175 computation imos?2 “m h i
1 7.8 computation “Om a ‘
1 8 program k07 5090em 1
1.8.1 computation Behret Sim o i I
1.3.9 computation ncu, frcthr s2m o o1 ‘
1.8 17 computation vesthe 1662m r l .
0% ey a5 o “n 1 | '
1 8 28 computation 4Om ‘
1.9 program k08 4933em I]
1.9.8 computation misslr integ 1044m c::{._: I '
1.10 program bik09 $234em v | - :
1.10.1 computation acsiha 1642m = ! '
1 10.2 computaben B ! !
1.10.11 computation 4o
1.11 program bikt0 138em P '
1.11.1 computation simas 1 4am] I
.11.5 computation om a {
1 12 program bkt 36830 g ,
1.121 computation accal 815m — {
1.12.2 computation imupro,navig 1751m 1
112 12 computation 49m o
1 13 program bik12 16400m o [)
113 1 computation obtarg, astrel corvel. moguid 2im | — !
113 10 computation seeher, 53 piag kaiman 228m !
1 13 24 computation 5T
1 14 program b1 1175em
144 computation aero Sm o '
114 10 computation o o f |
1 15 program b4 5234am ‘)
118 1 computarion acsthb 1660m - ‘
115.16 computation om] j [l

Figure 5.20

5. Application Softw:re 97

blk13

blkO8 AERO I

MISSILR I blk06 blk10
ATMOS2 ATMOSH1
blk0O

MISSILT, bIkQ7

MASSPR
BTHRST, NCU,

FRCTHR. VCSTHR

blk04
k14
TARGET, RELAT blkos ok
ACSTHA ACSTHB I
blk11
blk03
GYRO IMUPRO,
blkO1

CORVEL, BSTEER, BGUID, bik05
MCGUID, SEEKER, SSPLAG,

RESTHR

BAUTO,
FRACS,
MCAUTO,
KVAUTO,
VCSLOG

blk12

OBTARG, ESTREL,
KALMAN

Figure 5.21: 15-partition version of EXOSIM 2.0

98 - aual Report: Digital Emulation Technology Laboratory Volume |, Part 1

5.1.2.13. S§V20.16

The sixteen-processor version was created by splitiing the autopilots into boost and post-boost
partiions. This was done only to accomoduate the FPP and produced no speed benefit. This is
not especiaily clear from Figures 523 and 5.24, since we reverted to the more optimistg
estimates of communication lime (in anticipation of being able to convert many of the tloating-
point variables to shorter single-precision values). It is fairly evident, though, that the basic
parallelism does not change much between tiwese versions except near the end of the cycle. when
communication tends to dominate the total exccution time.

5. Application Software

blk13

!
bik08 AERO
MISSILR I bIk06 bIk10
ATMOS1

[
| ATMOS? I
blk00

f——— —— - —

’ MISSILT, bik07
| MASSPR

(BTHRST, NCU,
FRCTHR, VCSTHR

bik04
blkQ9 blk14
TARGET, RELAT Ir
ACSTHA I ACSTHB I
blk11

blk03

GYRO IMUPRO, ‘
- NAVIG OUTRUT

bikO1

blk05

CORVEL, BSTEER, BGUID,
MCGUID, SEEKER, SSPLAG,
RESTHR

blk12

MCAUTO,
KVAUTO,
VCSLOG

OBTARG, ESTREL,
KALMAN

Figure 5.22: 16-partition version of EXOSIM 2.0

LY

EXOSIM 2.0 V20 15A (Stage 1)

Name Duration

1 project srosim
11 program bik00
1 1 13 computation
11,15 computation
1.1.17 computation masspr
1.1.23 computation integ
1.1.24 computatior missh. ineq.in!
1125 computaton
1 2 program dik01
121 computavon
1 2.2 computation betser,bguid
1 2.8 computation
13 program bik02
13 1 computation outmas
1 4 program dh03
1.4 1 computation gyro
1 4.3 computation
1 5 program k04
1 5.1 computation target
1 8.5 computation reiat
1.5.12 computation
1 6 program bkOS
1.8.1 computation bauto, fracs me:
16 23 computation
1 7 program bik0G
1 7.1 computation mmk
173 computation
175 computation aimos2
1 7.8 computation
1.8 program bik07
1.8.1 computation tehrst
1 8.9 computation neu. lreths
1 8.17 compueation vesthr
1.8 25 computation integ
1.8 26 computation
1 9 program bik08
19 8 computation msssir integ
110 program bik0%
110 1 computation acstha
110 2 computation
11011 computation
111 program bik10
1111 compuation 2most
1115 computation
112 program b1+
1121 computation accel
112 2 computaion imugro navig
112 12 computation
1 13 program b&12
1131 computation oblarg. estred
13 10 computation seehsr sapia
113 24 computation
1 14 program bik13
1141 computanon asro
114 10 computation
' 15 program bk 14
115 1 computation acsthd
115 10 computation

7195m
5853em
88m
a7m
9USm
45m
1843m
49m

t2m

1333em
191m
3136em
207m
49m
17120m

49m

Pl

372em
$Hm
459m

4874am
1042m
$384em
41im
ém

49m

444m
49m

818m
1741m

12¢1m

5384em
am

49m

\
|

Figure 5.23

|
i .
1]
[\ l
| s | |
— | ! i :
—
| | ; 1
i | | |
| .
o | |
i | |
{ | o f'
A A
) | :
l : '
i !
_ I
A
— |
— i ‘
| — =
—
i
— % |
= = ,3
° |
L I
o (‘
| éol
| 5
| i
. | i
B
M— ' |
i ;
| - i :
i I .,
i | D[. |
I
! — i :
| s
! i
| omm— 3) :‘
o i | :
]
|

EXOSIM 2 0 V20 16A (Stage 1)

Name Duration
1 project exosim 4835em I ; {
1.1 program k00 4512em '
1.1.13 computation 88m
1 1.15 computation 87m . !
1.1 17 computation masspr 845m — i
1.1 23 computation irteg &15m — ;
1.1.24 computation missh imeq.integl 1543m !
1.1.25 compuration 49m a I
1.2 program di0t 4636em :
121 computation 72m [‘
1.2.2 computation beteer,bguid 121m o
1.2.8 computation 49m o
1.3 program ko2 1902em -
1.3.1 computation outmes 191m — '
1.4 program biko3 2368em ;
1.4.1 computation gyro 207m
1 43 computation 4%m
1§ program biko4 1028em ’*-—
1.5.1 computation target — 5
1.5.5 computation relat 266m — :
15.12 computation 49m ‘
1.8 program koS 350em ———
1.8.1 computation bauto 238m !
1.6.3 computation fracs dm z':‘a |
16.7 computation aom a i
1.7 program bik08 3416em
1.7.1 computation mmk Um]
1.7.3 computation 450m — I
1 7.5 compuration simos2 1908m [
1 7.8 computation 49m
1 8 program bik07 s11em \a IS !
1.8.1 computation bihvst B 680m R S— ~'
1.0.9 computation ncu,frethr 122m = :
1.8.17 computation vesthr Hm !
1.8.25 computation integ 210m ;;
1.8.28 comptation ©m o
1.9 program biko8 I608em
1.9 8 computation missk integ 1042m — :
1.10 program bk09 35470m - ~ :
1.10 1 computation acstha 4im 0 !
1.10 2 computation 4m o !
1.10.11 computation 4om o H
1.11 program b&10 S06em — X
1.11.1 computation atmos ! dm — |
1.11 8 computation 4om '
1 12 program bikt1 3025em
112.1 computation accel 818m [e
1 122 computation imupro, navig 174im
11212 computation 49m o "
113 program bk 12 S84am ———— |
113 1 computation odarg. estrel corvel meguid 210m - l |
113 10 computation seeher ssplag kaiman 48m |
113 24 compuation S0m i L] f
1 14 grogram dht3 2356em '
1 14 1 computation sero t241m — 1
1.14 10 computation 49m '
115 program bA14 3%47em - i
1 18 1 computation acsthd 8% 0 [
1.15 10 compuation o o [
1.18 program dh15 Nem —
118 1 computalion meauto, kvauto, vesiog. resthr Om]
1.18 19 computation 58m o

Figure 5.24

102 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.14. SSV21.16

We began producing another major revision, SSV21.16, based on our latest sixteen-processor
version, SSV20.16a. We chose to consider this a new version (21) because we were making
changes which were fundamental to the program, while not actually adding any new partitions or
making changes just in a few partitions.

First, we manually split up the initialization code so that each processor initialized only what was
necessary. (This refers to the explicit initialization code, not the DATA statements). After
completing this task, the simulation produced the same results as before.

Then, we split up the DATA statements and all variable declarations, again so that each
processor carried no more code than is necessary. The declaration statements were automatically
generated by the UNIX-based utility program "DECLARE" (described below) and the data
statements were automatically selected by an AWK filter.

We also created a new version that isolated the character strings and write statements scattered
throughout the code to one subroutine. This change was required because the FPP/FPX C
compiler does not support character strings and character I/O. During this same time, we began
converting partitions to single-precision. Starting with the onboard guidance routines, two
partitions were converted successfully. One partition contained the boost guidance and steering
routines and the other contained the boost autopilot.

The general procedure for converting to single precision was determined. We began to convert
partitions one at a time, isolating the single-precision modifications to only the partition under
consideration. Previously, it was necessary to simultancously change several partitions in order
to match variable usage. The new mcthod proceceded in two major stages on each partition. In
the first step, we simply linked a new set of communication routines which just truncate double-
precision values as they cross the partition boundary. No editing or recompilation is necessary
for the affected processor, since it still sees the truncated values as double precision. This step
simply verifies that no information going in or out of the partition really needs to be double
precision -- it does not show the effect of lowered precision on the partition's cumulative
calculations.

In the second step, the processor's code is modificd as required to actually perform only single-
precision calculations. At the same time, another new set of communication routines is linked to
automatically pad the single-precision valucs into double-precision values which are presented to
the rest of the simulation. This step verifies that the partition will truly run at the lower
precision, but it delays the need for editing other partitions to accept the single-precision format.
These two steps were repeated for each partition which we decided to convent.

A minor bug had crept into our 3- through 16-processor EXOSIM 2.0 simulations, causing the
sequencing of bums to be different from the single-processor version. We reran the UNIX bascd

5. Application Software 103

USAGE, COMBINE, and SUMMARY programs on VI19.3¢c and found that the
SUMMARY.TXT file contained 10 variables that were being assigned by more than 1 processor
concurrently. We had looked at each of these variable conflicts during the development of
V19.3c and had determined that they would not be a problem.

We reexamined each one of these conflicts to determine if our original analysis was correct.
After some checking, the variables FLTC, FLTCP, & FLTCY (in VCSTHR) were found to be
the problem. We split VCSTHR into VCSTH1 & VCSTH2 and moved the VCSTH2 part to the
correct processor. The corrected V19.3¢ and V21.16¢ simulations were tested and produced the
expected output. It should be noted that the automated analysis tools had correctly wamned us of
the FLTC, FLTCP, & FLTCY variable conflicts but human analysis had failed to correctly
determine whether the conflicts were really a problem.

We moved the unclassified portions of the V21.16c FORTRAN source to the SUN host, where
they were converted and compiled. This pointed out, much as expected, that there were three
partiions would have to be split up further in order to run on the FPPs. There were also three
other partitions which were slightly too large, but can probably be trimmed down without
additional partitioning. At least one of the three large partitions will probably never be running
on an FPP, anyway.

We also started working on the capability of running FPP/FPX code (generated for the FPP/FPX
PFP on the SUN Unix system) on the 286/386 PFP. The ability to download and start FPP/FPX
code was there, but for some unknown reason, only simple programs worked. We wanted to get
this working so that we could test one FPP/FPX program block at a time while running the
remaining program blocks unmodified on 286s or 386s.

5.1.2.15. SSV22.16

We then began to generate version 22 (specifically, SSV22.16a), which was to eliminate most of
the double-precision calculations. We rcpeated the conversions of the boost-stage guidance and

control partitions, using a previous conversion as a model. With each partition that we

converted, we were able to isolate the only variables which had to be passed in as double

precision, using the methodology that has been outlined before.

In summary, the following partitions were initially converted to single precision:
Boost guidance
Boost autopilot
Output
Gyro
Atmosphere 1
Atmosphere 2
Boost and VCS thrusters
ACS thrusters 1
ACS thrusters 2
Missile rotational states
Aerodynamics

104 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

Each of these has been tested, and the simulation behaves normally. Because of the method that
was used, we could easily switch back and forth between single and double precision for any
given partiion with no recompilation. It 1s thus possible to test different combinations, in the
event that there tums out to be some cumulative cffect as more partitions are converted.

The following partitions had double-precision requirements that could not be eliminated at the
time:

Midcourse/te.uunal guidance

Midcourse/terminal autopilot

Accelerometers/Navigation

Missile translational states

Target and relative states

5. Application Software 105

blk13

blk08 AERO I

MISSILR I blk06 blk10
ATMOS2 I ATMOS!1
blkoo

MISSILT, blk07
MASSPR
BTHRST, NCU,
FRCTHR, VCSTHR
blk04
ik k14
TARGET, RELAT blk09 b
ACSTHA I ACSTHB I
blk11
blk03
ACCEL, blk02
GYRO IMUPRO,
NAVIG OUTPUT
blkO1
CORVEL, BSTEER, BGUID, blk05
MCGUID, SEEKER, SSPLAG,
RESTHR BAUTO,
FRACS
bik16
blk15
SEEKER, SSPLA
G I MCAUTO,
KVAUTO,
bik12 VCSLOG

OBTARG, ESTREL,
KALMAN

Figure 5.25: 17-partition version of EXOSIM 2.0

106 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

1. SSV22.17 and SSV22.18

We completed a new 17-processor version, SSV22.17a, by splitting out SEEKER and SSPLAC
from the target and relative states partition. This would eventually have had to be done in order
to interface properly with an external sceker, and it also reduced the size of one of the partitions
which was 100 large for an FPP. We analyzed the communication and got tnis version running
correctly.

We then converted the new partition to single precision, making version SSV22.17b. This has
been verified to produce the correct output. The larger partition that remained was still one of the
few remaining double precision oncs, so we split out all of the double precision requirements to
another partition, creating the 18-processor version SSV22.18a. This was tested and verified.

The single-precision conversion was made on one of the resulting partitions, making version
SSv22.18b.

blk08

S. Application Software 107

MISSILR I blkOo

MISSILT, blkO7
MASSPR

f
ATMOS2
blk00

AERO I

blk10

i ATMOS1 I

BTHRST, NCU,

FRCTHR, VCSTHR

blk04

blk11
blk03
ACCEL,
NAVIG
blk01

blk17

BSTEER.
BGUID.
RESTHR

CORVEL,

MCGUID

blk16

‘ SEEKER, SSPLAG I

blk12

OBTARG, ESTREL,

KALMAN

hik14

’ ACSTHB I
blk02
OUTPUT

blk05

BAUTO,
FRACS

blk15

MCAUTO,
KVAUTO,

VCSLOG

Figure 5.26: 18-partition version of EXOSIM 2.0

108 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

5.1.2.16. SSV22.19

This left only two partitions which were too big for an FPP. One of these is currently targeted
for a 386 processor, but the other was fairly easy to split. This was done, resulting in the 19-
processor version SSV22.19a, which produced identical output.

|
[

blk08

MISSILR I

blk00

MISSILT,
MASSPR

blk04

TARGET, RELAT l

blk11

5. Application Software 109

blk13
AERO I
blk06 blk10
ATMOS2 I ATMOS1
blk07
BTHRST. bik18
NCU,
VCSTHR ‘ FRCTHR I
blk09 blk14

ACSTHA I ACSTHB '

blk03

blk0O1

NAVIG

blk17

ACCEL, blk02
IMUPRO,

OLTPUT

BSTEER.
BGUID.
RESTHR

blk16

CORVEL,

MCGUID

blk05

BAUTO,
FRACS

blk15

E PL I

SEEKER, SSPLAG MCAUTO.
KVAUTO,

blk12

OBTARG, ESTREL,

KALMAN

VCSLOG

Figure 5.27: 19-partition version of EXOSIM 2.0

EXUSIM 2.0 vI0 19F (Slage |,

]

Name

Ouation
pea sosn ssz0um | 1 ; | | |
11 program SO0 49450 1 ‘ . " !
11,1 computabion 67m ig 1 i i | “
1.1.21 compuaton o i ! { [i | \
1128 compuaton m ' a i | i | i
1 1.30 computation masspr 02m 1 ‘{ i }
1196 computanon ey aism 1 : ‘ e [
1.1 37 compunaiion mash,mieg, nteg 1480m ' | I , c . .
11.38 computanon 49 l i : | ' ') °
+ 2 program b0 5112em ‘ : - : ,
12 compuiaton i i i ! { :
} 2.2 compuLtion betesr,bjus 1m | ‘ ! t 1 =
125 computation 4Im { i ; ' ‘ ' ‘ n‘
1 3 program diC2 180em I] ‘\ :) —
1.3.1 compuaation outmes 176m | |] i —
1.4 program b 2260m . T i i ' .
141 computauon gyro 2158m) . ‘ ‘
+ 43 computaton am : ‘ i o ’
1.5 program bikDé 1038em ‘ E VI——-—I—- ' ;
151 computanon 1arpet anm | ? { ! | .
1.5 5 computation reias %tm i ; | i ' i ‘
15 12 computaton “m i | |‘ q,;:‘ s 3 < ’ ' ’
1.6 program bixaS 3700m “] | ' 1 T | gy
161 compaanon dauto 222m \ : 1 , } | —
1 6.3 computation fracs 42m : ! i ! ! : o
16 7 computabon %m i f | E 3 % 3 o
17 program bik06 Blem l t ‘] 1 1 |
7 1 computaion mmk 855m —_— | | ! ;
* 7 3 computansn 426m r;’: i 7 | ‘
7.5 computation atmos2 114zm I — . ‘ ,
178 computaben 4m i i i ! i
1 8 program t07 T 3N1em i i ‘;) "
181 computalion baryst 662m i | =—-__f—_—, l | 1 ‘
1 8 § computation ncu 12m ! 1 = ‘ i \A
* 810 computation vesth ! 40m s | ; :
1.8 18 computaton imeg 190m l { é:: 1‘ I ! I
1,819 compitabon 4Im | 1 } i 4 :
* 9 program b8 36410m T T l } i ;
1.9.8 computanon masir integ Kom ‘ | ————— T
110 program bk 3503am I - - l '
110.1 computation acstha 4om I \ ' ;
1102 computaten om i a | ! . !
110 11 compviation am 1 | ‘['
' 1 program dik10 480em v : P—— .
111 ¢ compARion amos ! 419m i 2‘5 1)
111 § compuraton “%m |] t o | ‘ l
1 12 program bik11 29160 < T - n] i ‘
' 121 compuranion accel 03m ; [t:{.——_—: { : ' \
1122 computation mupio.navig 1728m W‘ | ! . i : I
11222 mmpuavon 45m l ! i l J I o
+ 13 program b2 708em 1 i —
1131 comouiation obtarg. estret Mm l T ; ! — ;
* 131 computation aaiman 41m l i E ‘ . “
* 112 comoutaton 5m ' ! ‘ i ‘ ?
1 *4 program 13 2065em ! [. '
© 141 compuaton saro 1460m . [S—— :
‘1410 compuaLon 45m 1‘ | ! , .
' 18 program bik14 1802em [- X
£ 5t computaon acsthd 40m i 1 3 ‘ i
* *5 1C computaton 46m ‘ 1 | “ :
1 16 program pi1s 285em { | ! ' .
16 comptalion vesin2 MCALio kvBy am ‘. r f] '
178 16 or moutabon o S4m t | | ‘ i -
117 program bik16 283am ‘ ‘ ’ \ ’ —
T ompUtation seener om : ‘ ‘ ‘ . »
7 3 computation seplag 45 ; i T A s
* 178 computatior 46m ' t : [=}
* '8argrar a7 '32«'\: ' ' : Sem————
© Bt OMmpUIEOn OV TEG Lt o | : o
T8 1 computation om
* 1813 computavon 3m : !
* 19 program b 18 3344em '
19 1 computaion Tty 4om ’ 0 | '
19 11 computanon “n | ‘ 5 ! o

Ficure 5.28

5. Application Software 188!

At the same time, we reexamined the continuing problem of uninitialized variables in the original
version of EXOSIM 2.0. This reemerged as a problem when we attempted to compile the code
on the Transputer system (as a cross-check). A rcexamination of the 1-processor and 16-
processor versions of EXOSIM V2.0 with the "new" version of INITIAL (described elsewhere)
spotted numerous uninitialized variables. The following code fragment is a simplified version of
the actual code, because all of these assignments were hidden inside subroutines.

IF (T .GE.
FRCX
FRCY
FRCZ

END IF

IF (T .GE. 10)
FXACS .
FYACS
FZACS
FXVCS
FYVCS
FZvCes

)

[T

W o

3]
zZ
(&)
4
"1

FX
FY
rz

FRCX + FXACS + FXVCS
FRCY + FYATS + FYVCS
FRCZ + TZACS ~+ FZVCS

noh

As this shows, the FRC_ vanables arc uninitialized until T >= 5. Also, the F_ACS and F_VCS
variables are also uninitialized until T >= 10. Consequently, the values of FX, FY, FZ arc
suspect since they are computed sometimes with unknown values.

Unfortunately, the original EXOSIM V2.0 from Coleman Rescarch contained many examples of
this type of programming. It is essential that this be fixed because it can cause some of the
hardest bugs to track down. When one considers how we move programs from 286/386 to
FPP/FPX processors, we don't want to introduce any unknowns into the problem by leaving
variables uninitialized.

The UNIX-based DECLARE program (described clsewhere) was modified to fix this problem by
assuring that every variable used in the program ias an initial value. We used DECLARE in
order to generate @ new 1-processor version (SSV18.1¢) where all of the previously uninitialized
variables (1,167 to be exact) are initialized to zero with DATA statements.

The new version was then tested on the DEC ULTRIX system with both the VAX FORTRAN
Compiler, ULTRIX FORTRAN Compiler, the INTEL iRMXII system with the FORTRAN 286
Compiler, and the 1DM PC with the Transputer FORTRAN Compiler. In all cases, the new
version worked perfectly.

The real test came when a 386 processor's memory was filled with NOT-A-NUMBER (NAN)
and then loaded and exccuted the program. The old version crashed immediatcly because the
387 tried to do an operation with NAN. The new version ran to completion without a problem.

We also began to support the integration of the Sceker Scene Emulator. Initially, this was be
done with the post-boost-only version of EXOSIM being written by Richard Pitts and Philip
Bingham. We worked with Andy Henshaw, implementing Richard's sceker partition on the
transputers. Steve provided a syntax translation of the EXOSIM V2.0 secker routines, using his
FORTRAN-TO-OCCAM translator. Andy completed the conversion to Occam and debugged

112 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part |

the code. We then tested our connection to the FPP-based PFP and were able to run the secker
partition on an external transputer. The codc seemed 1o run correctly, but not identically to the
FPP version. Presumably, this was duc to differences in the floating-point precision in the
random number gencerator and elsewhere.

At this pornt, it became necessary to trim out all of the extra communication cycles so that we
could get accurate timing and begin converting blocks to the FPPs. We created a new version,
SSV22.19b, in which we manually resolved most of the precision differences between blocks.
Prior to this, all vaniables were being sent as double precision, even when they were calculated as
single precision, 50 conilicts never occurred. We had to introduce a few new communication
routings to make precision conversions, and we modified the NETWORK program to correctly
handle these new routines. A new crossbar program was generated, and the version produced the
correct output.

We then began to make final preparanions {or moving the code 1o FPPs. We trimmed out all of
the unnecessary receiving of single-precision values as doubles. and we eliminated all instances
of vanables being sent as doubles and used at different precisions on different processors. This
latter step involved quite a bit more double-to-single conversion on the five remamning double-
precision partitions, eventually producing version SSV22.19f.

We continued 10 work with version SSV22.19f, which had 2ll of the necessary precision
conversion completed. In preparation for porting individual partitions to the FPP, We prepared a
timing version of the code, somcething we have not done since before the precision conversion
began. It was not possible to extrapolate the 386 timings exactly to FPP timings, but our best
esumate was that we would be close to real time, but not quite there.

Based on the uming chans generated by Microsolt Project, we ihen rcordered much of the
communicauon to balance the performance across stages of tlight. We have tested this version
and reumed 1t, replacing the previous SSV22.191 A uming chan for stage 1 (boost-phase) of
SSV22.194 1s shown as Figure 5.28. Once again, we adjusted the theoretical communication
times, taking into account the mixture of single- and double-precision variables. This resulted in
an apparcnt lengthening of the total ime relative to the last timed version, SSV20.16a, but the
newer version actually ran much faster (within about a factor of four or five of rcal time, which
was very good for the 386-based processors).

We have, at least for the time being, feveled out at 19-processor implementations of EXOSIM
2.0 We created versions SSV22.19. ¢ and SSV22 19h. Version 22.19g was generated by the
UNIX-bused DECLARE program. We compiicd ang tested the new version with main programs
that now nclude only the varables required with cach vanable assigned an imual value with a
data statement Version 22.19h fixed a tew of the parutions that would not otherwise fit en the
FPP or FPX boards and s desenbed in more detail below,

As noted in the past, additional partttions might have 1o be made simply to make EXOSIM fit on
the FPP and FPX processors. Version SSV 2219 ¢ was ported to the Sun-hosted PFP, and all of
the blocks were translated to C rusing F2C)0 then comiptled and Linked tusing the new VICLD
program) to determine their memory reguirements The following table summuanyszes the results:

5. Application Software 113

PROGRAM /TYPE | CODE DATA PROBLEM
SSBLKOO FPX 57708 4700 <-- code size
SSBLKOI1 FPP 37032 1496

SSBLKO02 FPP 5892 3356

SSBLKO03 FPP 28224 2040

SSBLK FPX 56124 8140 <-- code size
SSBLKOS FPP 30696 10356 <-- data size
SSBLK0O6 FPP 21804 2212

SSBLKO7 FPP 30132 3228

SSBLKO08 FPP 28560 2060

SSBLKO9 FPP 28656 1948

SSBLKI10 FPP 7632 1152

SSBLK11 FPX 78516 4880 <-- code size
SSBLK12 FPX 62964 4232 <-- code size
SSBLK13 FPP 14820 8532 <-- data size
SSBLLK14 FPP 28116 1892

SSBLK15 FPX 135852 4292 <-- code size
SSBLKI16 FPP 22872 2352

SSBLK17 FPP 34668 2200

SSBLK18 FPP 50388 2144 <-- code size

Some of these problems were climinated in the next version, SSV22.19h. The data sizes of both
SSBLKO5 and SSBLK13 were reduced 1o acceptable levels by climinating some needlessly
duplicated arrays (which were 1in the original single-processor version). The code size of

114 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

SSBLK18 was reduced by making some array parameters local to the routine FRCTHR, since the
calling program did not reference them,

The remaining problems are more difficult, requiring either more partitioning or improved
compilers that generate more efficient (and perhaps faster) code. We are hesitant to make
partitions which would otherwise be unnecessary and contribute to additional communication
overhead.

As a separate effort, Richard Pitts and Philip Bingham have begun to use the most recent
complete version of EXOSIM developed by Steve Wachtel and Tom Collins as the basis of a
boost-phase-only version of EXOSIM 2.0. This requires mainly deleting some of the code that
is required only in the later stages of flight, along with some associated communication. This
also alleviates much of the memory problems described earlier.

5.2. LEAP

Beginning in January 1991, we began working with Brian Stevens at GTRI in Cobb County. We
discussed the LEAP program and GTRI's approach to its simulation. Hughes has both an
emulator (running actual LEAP code) and a simulation (used internally only). Brian attempted to
stay in contact with Hughes and make changes to his simulation accordingly. (There was no
mechanism by which design changes are automatically routed to GTRIL)

An earlier version of GTRI-LEAP was rather large and unwieldy, probably much like EXOSIM,
but Brian has concentrated on making a smaller, faster program. Much of the programming had
been done by an assistant, and Brian was not yet completely confident that it was correct. He
was also still making some organizational changes in the code, but had other responsibilities that
prevented him from spending much time on it.

Brian has developed his own FORTRAN executive (main) program for calling the LEAP
subroutines. This program is designed to be generic enough to be useful for other simulations of
continuous/discrete hybrid systems, but it is not particularly suited to our needs. For this reason,
we will have to write our own main program, some general math routines, and integration
routines. There are two LEAP subroutines. One of them, "F,” includes all of the continuous
time state variables and all of the corresponding derivative calculations. The state variables are
grouped as a single vector, which helps to identify them. The other function, "D," performs the
discrete time calculations.

The fastest sampling rate in thc actual LEAP vchicle is 3600 Hz, cormresponding to the
accelerometers and gyros. This has been chosen as the integration time step, and all discrete
events (secker data, PWM, quaternion and control calculations) occur at even multiples of this
rate (either 60 Hz or 360 Hz). The F and D subroutines arc both designed to be called at every
time step, since the discrete events are scheduled within the D routine by a time-step counter
(both from a standpoint of frequency and phase).

5. Application Software 115

The concise state-variable representation is suitable for the PFP, and the two-subroutine
implementation gives us a good start at partitioning into at least two processors. The complete
implementation of a parallel version, however, will take some time, though probably not nearly
as long as EXOSIM. We have already written the main program, and he has modified the
integration and 3-by-3 matrix multiplicaiion routines from EXOSIM to be usable. We also
verified that the gravity calculations were correct, since the gravitational contribution had been
disabled in the GTRI version of LEAP. We currently have only the "F" routine, which did
compile and run, but not all variables were initialized correctly. All of the intermediate versions
(prior to partitioning) will be run on a PC, the PFP host, and a single PFP target.

With regard to the uninitialized variables, we examined the GTRI code and came up with some
reasonable initial values, which enabled us to run our executive program with the GTRI vehicle
model. We tried running the simulation with an initially-stationary vehicle, as well as with a
non-zero initial velocity, both with and without gravity. The output indicates that the model
behaves correctly, at least from a qualitative standpoint. (The stationary vehicle falls toward
earth, and the moving vehicle continues moving).

We then continued with a quantitative evaluation of the simulation’s performance. We let the
LEAP vehicle free-fall and observed that it fell at the correct rate. We also imparted an initial
spin and verified that it remained constant. We then calculated the correct altitude and initial
velocity to achieve geosynchronous orbit. When these values were used in the simulation, the
vehicle behaved approximately as expected, showing only a slight degradation of orbit after
several hundred seconds. By making the integration timestep larger, the degradation got worse,
which can be attributed to numerical inaccuracies. We may investigate smaller timesteps and
other integration algorithms, like RK4 (we are currently just using Euler, as in EXOSIM, but
Brian uses RK4 and variable-step methods).

It was confirmed that it is possible to change most of the LEAP variables to single-precision,
without significant effects on the program output. A temporary version was made in which the
only variables left as double precision were:

-- Earth coordinate system variables, including initial values
-- All coordinate-transformation matrices
-- Gravity calculations,

The gravity calculations are donc in double-precision partly because they are based on Earth
coordinates and partly because the results can be very small. All intermediate versions of LEAP
will be left with only double-precision real numbers for the near future, since the GTRI source
uscs double-precision. At some later time, we may choose to use more single-precision variables
to accomodate the FPP and the crossbar.

Graphic display capability was addced to the program. We can plot orbits on the PC screen, and
we have run test cases of near-circular, elliptical, and parabolic trajectories. The graphics are

116 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

fairly simple, which may allow them to be ported to our graphics terminals on the PFP by simply
substituting a few routines.

Brian Stevens subsequently made some changes in his continuous-time routine, "F". Most of
these changes related to the coordinate systems, which had been redefined. Brian also cleaned up
some of the COMMON blocks, implemented cross-product torque terms, altered his use of the
quaternion, and eliminated some unnecessary variables.

Few changes were required to make this version of the main LEAP routines run with our
executive program. We simply had to replace some non-standard DO loops, correct some
double-precision constants, and modify the implementation of an initialization routine (to avoid
using the ENTRY statement, which is not supported on the Intel compiler). Three trajectories
were run to verify that the new version was consistent with the older one. All data is now output
in a format compatible with Excel, for easy plotting of values. For the first ime, LEAP was
ported to the RMX host. It compiled and ran fine, producing values that were identical to those
from the PC version.

The working relationship with GTRI was productive, and their simulation was both lean and
modular. We will have to consider during the coming year whether to continue with this version
of LEAP or perhaps to work with the Hughes version.

6. Appendix A: Environment file format 117

6. Appendix A: Environment file format

The "ENVIRONMENT" file contains information necessary for mapping symbolic names used
by the PFP development tools to actual hardware. It is a text file, and each line contains either
information about a hardware element (crossbar, sequencer, or target processor) or a comment
(always with a "#" as the first character on the line). Example 1shows a full 32-processor
configuration. Nommally, the ENVIRONMENT file does not need to be altered by the
programmer. It may be necessary to do so, however, if some processors are removed for service
or if memory settings are changed.

The form of a non-comment line in the ENVIRONMENT file is:
<element name> = <base address>;<limit address>;<element type>;

where <element name> is the label used by other applications to refer to that element, <base
address> is the starting memory address of the element in the host address space, <limit address>
is the number of valid memory locations (in bytes), and <clement type> is one of several valid
element types. Currently the only element types supported are 80286, 80386, 29325, 29327,
0001, 0002, effe, and fffe. Four of these are processor types (80286, 80386, 29325, and 29327),
two are for the "first” crossbar and sequencer (0001 and effe, respectively), and two are for the
"second" crossbar and sequencer in a 64-processor system (0002 and fffe, repectively). All
numeric ficlds are hexadecimal.

The <element name> field can be any 16-character string, as long as there are no repetitions.
These names are used in the PROCESS.TXT and NETWORK.TXT files for each application, so
they should usually not be changed from their default values (or else some applications will cease
to run correctly).

The <base address> field is not actually a true physical address. Only the last six hex digits
represent the memory address of each element. The first two hex digits are used to "turn on" the
appropriate card cage, since there are at least four active card cages in a PFP, all mapped to the
same address space but with no more than one enabled at any given time. This is done by
issuing a particular I/O command to the address 8XX, where the X's are the first two digits. All
of this is transparent to the programmer, so the eight-digit address can be viewed as a virtual
address.

Note that the example is for the "second” half of a 64-processor system. The first half would
contain processors p00 through p31.

118

Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

Example 1: ENVIRONMENT.

network 2 configuration
crossbar = 00040000;010000;0002;
sequencer = 00000000;010000;fffe;
upper right bank configuration
p58 = 02100000;100000;80286;

p33 = 02200000;100000;80286;
p37 = 02300000;100000;80286;
p48 = 02400000;100000;8028%;
p52 = 02500000;100000;,80286;
p47 = 02600000;100000;80286;
p43 = 02700000;100000;80286;
p63 = 02800000;100000;80286;
p59 = 02900000;100000;80286;
p32 = 02a00000;100000;80286;

p36 = 02b00000;100000;80286;
middle right bank configuration

p45 = 04100000;100000;80286;
p4l = 04200000;100000;80286;
p6él = 04300000;100000;80286;
pS7 = 04400000;100000;80286;
p34 = 04500000;100000;80286;
p38 = 04600000:;100000;80286;
p49 = 04700000;100000;80286;
p53 = 04800000;100000;80286:;
p46 = 04900000;100000;80286;
pd2 = 04a00000;100000;80286;
p62 = 04b00000;100000;80286;

lower right bank configuration

pS51 = 06100000;100000;80286;
pS55 = 06200000;100000;80286;
pé44 = 06300000;100000;80286;
p40 = 06400000;100000;80286;
p60 = 06500000;100000;80286;
p56 = 06600000;100000;80286;
p35 = 06700000;100000;80286;
p3% = 06800000;100000;80286;
p50 = 06900000;100000;80286;
p54 = 06a00000;100000;80286;

<element name> = <base address>;<limit address>;<element type>;

7. Appendix B: vicld program source 119

7. Appendix B: vicld program source

FILE: vicld/Makefile

]

Copyright 1991

Georgia Institute of Technology

Computer Engineering Research Laboratory
Author: Stephen R. Wachtel

¥

default: vicld

CC = cc -g

INCLUDE =

CFLAGS =

vicld: viecld.o vicld_sym.o
$(CC) -o vicld vicld.o vicld_sym.o

.SUFFIXES: .c¢
.c.o:
$(CC) -c $(CFLAGS) $<

clean:
rm -r vicld vicld.o vicld_sym.o

FILE: vicld/a.out.h

/t
* Copyright 1991
* Georgia Institute of Technology

* Computer Engineering Research Laboratory
*/

#include “magic.h”

/t
exec header format

*

/

struct exec {
unsigned long a_magic; /* magic number */
unsigned long a_text; /* text segment size */
unsigned long a_data; /* initialized data size*/
unsigned long a _bss; /* uninitialized data size*/
unsigned long a_syms; /* symbol table size*/
unsigned long a_entry; /* entry point */
unsigned long a_trsize; /* text relocation size*/
unsigned long a:drsize; /* data relocation size*/

be

#define N_BADMAG (x) \
(BAD_PFP_MAGIC((x).a_magic))

/'
object file section offsets
=/

¢define N_TXTOFF (x) \

sizeof (struct exec)
tdefine N_DTAOFF (x) \

(N_TXTOFF (x) + (x).a_text}
tdefine N_TRLOFF {x) ‘

(N_DTAQFF (x) + (x).a_dala)
#define N_DRLOFF (x) \

(N_TRLCFF (%) + (x}.a _trsize)
#deline N _SYMOFF (x) \

(N_DRLCFF(x) + (x).a _ars.ze)
*define N _STROFF (x) \ N

120

/t
*/

(N_SYMOFF (x} + (x).a_syms)

struct relocation_info

{

unsigned int

long r_address;
r_symbolnum:24,

r_pcrel:l,
r_length:2,
r extern:1,

/™
/*
/*
/*

:4; /*

relocation information format

address which

1s relocated

Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

*/

/* local symbol ordinal */
was relocated pc relative already */
tes, 2=4 bytes, 3=<invalid> */
does not include value of sym referenced */

O=byte, 1=2 by

unused */

/* for use when in-core */

/* index into file string table */

/* type flag (N_TEXT,..) */

=/

/* see <stab.h> */

/* value of symbol

al to 1d) */

ol */

or'ed in */

he type bits */

/'
symbol table entry format
*/
struct nlist {
union {
char *n_name;
long n_strx;
} n_un;
unsigned char n_type;
char n_other; /* unused
short n_hash;
unsigned long n_value;
bi
/t
Simple values for n_type.
*
/
#define N_UNDF 0x0 /* undefined */
#define N_ABS Ox2 /* absoclute */
#define N_TEXT O0x4 /* text */
#define N_DATA Ox6 /* data */
#define N_BSS O0x8 /* bss */
#define N_COMM 0xl12 /* common (intern
#define N_FN Ox1f /* file name symb
#define N_EXT 01 /* external bit,
#define N _TYPE Oxle /* mask for all t
/*
Dbx entries have some of the N_STAB bits set.
These are given in <stab.h>
*/
#define N_STAB OxeO /* if any of thes

FILE: vicld/magic.h

* Copyright 1991
* Georgia Institute of Technology
* Computer Engineering Research Laboratory

(or sdb offset)

*/

e bits set, a dbx symbol */

*/
#define PFP_MAGIC_FPP_LOADABLE 0x50504603 /* “\QO3FPP" */
#define PFP_MAGIC_FPP_LINKABLE 0x70706603 /* "\003fpp"
#define PFP_MAGIC_FPX_LOADABLE 0x58504603 /* “\OO3FPX" =/
#define PFP_MAGIC_FPX_LINKABLE 0x78706603 /* "\003fpx"
#define PFP_MAGIC_SEQ LOADABLE 0x51455303 /* "\OO3SEQ"
#define PFP_MAGIC_ XBAR LOADABLE 0x52415803 /* "\0O3XBR"
#define PFP_MAGIC_286_LOADABLE 0x36383203 /* "\003286"
#define PFP_MAGIC_ 286 KERNEL 0x4b383203 /* "\0C328K" */
#define PFP_MAGIC_286_BOOTSTRAP 0x42383203 /* “\00328B"
#define PFP_MAGIC_ 386 LOADABLE 0x36383303 /* "\003386"
#define PFP_MAGIC 386 KERNEL 0x4b383303 /* "\0C328K" =/
#define PFP_MAGIC_386 BOOTSTRAP 0%42383303 /* “"\0C338B"
#define PFP_MAGIC_386 COFF 0x0004014c /* by 1inspection */
#define BAD_PFP MAGIC (x) \
({x) !="PFP MAGIC FPP_ LCATABLE A
&6 (x) != PFP MAGIC FPP_LINXABLE \
§8 () PFP MAGIC FEX_LOADABLE A

Hon

§6 (x)

PFP_MAGIC FPX LINKABLE

*/

*/
*/
*/
*/

*/
*/

*/

7. Appendix B: vicld program source 121

&6 (x) != PFP_MAGIC_SEQ_LOADABLE \
&6 (x) != PFP_MAGIC_XBAR_LOADABLE \
&6 (x) != PFP_MAGIC 286 LOADABLE \
&6 (x) != PFP_MAGIC 286 _KERNEL \
&6 (x) !'= PFP_MAGIC_286_BOOTSTRAP \
&& (x) !'= PFP_MAGIC 386 LOADABLE \
&& (x) != PFP_MAGIC 386 KERNEL \
&6 (x) !'= PFP_MAGIC_386 BOOTSTRAP \
&6 (x) != PFP_MAGIC_386_COFF \

FILE: vicld/vicld.c

/t

*» Copyright 1991

* Georgia Institute of Technology

* Computer Engineering Research Laboratory
* Author: Stephen R. Wachtel

*/

#include <stdic.h>
#include <string.h>
#include "a.out.h"
#include "vicld.h"
#include "vicld_sym.h"

#define TEXT_SIZE 12
tdefine DATA_SIZE 4
#define BSS_SIZE DATA_SIZE

nt rmap = 0
int number_error = 0;
int number_object = 0;

#define NUMBER_OBJECT 1024
OBJECT input_object NUMBER_OBJECT];
OBJECT output_object;

int compare(entryl, entry2)
RELOCATION *entryl;
RELOCATION *entry2;
{
/* gsort compare */
re urn(entryl->r_address - entry2->r_address);
} /* compare */

void read_object_header{ object)
OBJECT *obiject:
{
/* read header */
fread(&éobject->header, sizeof(HEADER), 1, object->file j};

/* check header */
switch (object->header.a_magic)
{
case PFP_MAGIC FPP_LINKABLE:
output object.header.a_magic = PFP_MAGIC_FPP_LOADABLE;
break;

case PFP_MAGIC_FPX_LINKABLE:
output_obiject.header.a_magic = PFP_MAGIC_FPX_ LOADABLE;
break;

default:

I
N
%)
tr
Q
oy
ad
al
™
A
O
ol

r magic number '%s'\n", object->name };
N g J
X1

n
{

e

® rn

122 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

} /* read_object_header */

void read_object_string(object)
OBJECT =*object;
{

int length;

STRING *string;

/* read string table length =/
fseek (object->file, (long)N_STROFF{ object->header), 0);
fread(&length, sizeof(length), 1, object->file):

/* allocate string table */
string = (STRING *)error_malloc(length);

/* read string table */
fseek { object->file, (long)N_STROFF(object->header), 0);
fread(string, length, 1, object->file);

/* save string table */
object->string = string;
} /* read_object_string */

void read_object_symbol(object)
OBJECT *object;
1

int length;

SYMBOL *symbol;

/* read symbol table length */
length = object->header.a_syms;

/* allocate symbol table */
symbol = (SYMBOL *)error_malloc(length);

/* read symbol table */
fseek (object->file, (long)N_SYMOFF(object->header }, 0);
fread(symbol, length, 1, object->file);

/* store symbol table */
object->symbol = symbol;
} /* read_object_symbol */

void read_object_tr(object)
OBJECT *object;
{
int length;
RELOCATION *tr;

/* read text relocation table length */
length = object->header.a_trsize;

/* allocate text relocation table */
tr = (RELOCATION *)error_malloc(length);

/* read text relocation table */
fseek (object->file, (long)N_TRLOFF{ object->header), 0);
fread(tr, length, 1, object->file);

/* sort text relocaticn table */
gsort{ tr, length / sizeof(RELOCATION), sizeof(RELOCATION

/* store text relocation table */

object->tr = tr;
} /* read_object_tr */

void read_cbject dr(object)
OBJECT *object;
!

int length;
RELOCATION *dr;

/* read data reiccation wab.e iength v/

7. Appendix B: vicld program source 123

length = object->header.a_drsize;

/* allocate data relocation table */
dr = (RELOCATION *)error_malloc{ length):

/* read data relocation table */
fseek (object->file, (long)N_DRLOFF(object->header), 0);
fread(dr, length, 1, object->file);

/* sort data relocation table */
gsort (dr, length / sizeof{ RELOCATICN), sizeof(RELOCATION), compare);

/* store data relocation table */
object->dr = dr;
} /* read_object_dr */

void update_object_symbol{(object)
OBJECT *object:
{

int length;

register int index;

/* calculate symbol table length */
length = object->header.a_syms / sizeof(SYMBOL):

/* replace symbecl index with syrbol name */
for (index = 0; index != length; index+:)
{
object->symbol[index].n_un.n_name = &object->string(object->symbol]|
index]J.n_un.n_strx |;
}
} /* update_object_symbol */

void rwaed_input _ocbject }
{
register int object_number;

for (object_number = 0; object_number != number_ object; object_number++)
{
if ((input_object(object_number }.file = fopen(input_object|
object_number].name, “r")) == NULL)
{
fprintf(stderr, "ERROR: unable to open '$%s'\n”, input_object({
cbject number].name);
exit(1);
}

read_object_header(&input_object| object_number]);
read_object_string{ &input_object[object_number]);
read_object_symbol (&input_object{ object number |);
read_object_tr(&input_object{ object_number]);
read_object_dr(&input_object| object_number |);
update_object symbol (&input_object[object number]);
fclose(input_object{ object number |.file });

}
} /* read_input_object */

veid print_object header(object)
CBJECT +*object;
{

fprintf(stdeout, "“HEADER:\n");

switch (object->header.a_magic)
{
case PFP_MAGIC_rpPP LINKABLE:
fprintf(stdouz, "fpp zbliectin™ 3},

preak;

case PP MAGIC FPX LINKARLI:

124 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

fprintf(stdout, "fpx object\n");
break;

default:

fprintf(stderr, "ERROR: magic number ‘$%s'\n", object->name };

exit(1);
}

fprintf{ stdout, "text size
fprintf(stdout, "data size
fprintf(stdout, "bss size

$d\n”, object->header.a_text);
$d\n", object->header.a_data);
$d\n", object->header.a_bss };

Roton

fprintf(stdout, “entry address = %d\n",
object->header.a_entry)

fprintf{ stdout, "text relocation table length = %d\n",

object->header.a_trsize / sizecf(RELOCATION));

fprintf(stdout, "data relocation table length = %d\n",
)

object->header.a_drsize / sizeof(RELOCATION)
fprintf(stdout, "symbol table length = %d\n",
object->header.a_syms / sizeof(SYMBOL));

’

fprintf(stdout, "\n");
} /* print_object_header */

void print_object_symbol(object)
OBJECT *object;
{

register int index;

int length;

SYMBOL *symbol;

fprintf(stdout, "SYMBOL TABLE:\n");

/* calculate symbol table length */
length = object->header.a_syms / sizeof(SYMBOL };

/* print symbol table record */
for (index = 0; index != length; index++ }
{

symbol = &object->symbol{ index]:;

fprintf{ stdout, "%s %d %d %d %d\n",

symbol~>n_un.n_name. symbol->n_type, symbo'->n_other, symbol->n_hash,

symbol->n_value);
}

fprintf(stdout, "\n");
} /* print_object_symbol */

void print_object_tr{ object)
OBJECT *obiject;
{
register int index;
int length;
RELOCATION *tr;

fprintf(stdout, "TEXT RELOCATION TABLE:\n" });

/* calculate text relocation table length */
length = object->header.a trsize / sizeof(RELOCATION);

/* print text relocation takle record */
for { index = 0; index '= length; index++)
{

tr = &object->tr[index |;

fprintf(stdout, "%d %d %d %d %d\n",
tr->r _address, tr->r symbolnum, tr->r pcrel, tr->r length,
)

fprintf(stdout, "\n");
} /* print_object_tr */

void print object dr(object)
OBJECT *object,

tr->r_ extern

7. Appendix B: vicld program source 125

register int index;
int length;
RELOCATION *dr;

fprintf(stdout, "DATA RELOCATION TABLE:\a");

/* calculate data relocation table length */
length = object->header.a_drsize / sizeof{ RELOCATION);

/* print data relocation table record */
for (index = 0; index != length; index++)
{

dr = &object->dr{ index]:

fprintf{ stdout, "%d %d %d %d %d\n",
dr->r_address, dr->r_symbolnum, dr->r_pcrel, dr->r_length, dr->r_extern);
}

fprintf(stdout, "\n");
} /* print_object_dr */

register int object number;

for (object_number = 0; object_number '= number object; object_number++)
{
fprintf(stdout, "%s (%s):\n", input_object[object_number |].name,
(input_object{ object_number !.required ? "required" : "not required"));

print_object_header(&input_object[object_number |):
print_object_symbol{ &input_object[object_number]):
print_object_tr(&input_object[object number]);
print _object_dr(&input_object[object_number |);

fprintf(stdout, "\n");

}
} /* print_input object */

void add_public_symbol{)
{
register int object number;
register int index;
int length;
SYMBOL *symbol;
STRING *string;
LIST *list;

for (object number = 0; object number != number_object; object number++)
{
/* calculate symbol table length */
length = input_object| object number].header.a_syms / sizeof(SYMBOL):

/* search symbol table for public symbol */

for (index = 0; index != length; index++)
{
symbol = &input object! opject number].symbol{ index |;
if ((symboi->n _type & N_EXT) != N_EXT)
{
string = symbcl->n_un.n_name;
if (find symbecl(string) == NULL)
{
list = add_symbol(string):
list->n_type = symbol->n_type;
iist->n_other = symbol->n other;
list->n_hash = symbol->n_hash;
list->n_value = symbol->n_vaiue;
iist->cblect number = object number;
)
e.se

srint i stdout, "WARNINC: multiple dec.artion

126

Annual Report: Digital Emulation Technology Laboratol

'¥s'\n", string);

i

}
}

/* add_public_symbol */

void resolve_external symbol(object number)
int object_number;

{

1

/* recursive =/
int index;
int length;
RELOCATION =*tr;
RELOCATION =*dr;
STRING *string;
LIST *list;

if (input_object{ object_number].reguired
return;

input_object[object_number].required = 1;

ry

)

/* calculate text relocation table length */
length = input_object(object number |.header.a_trsize / sizeof(RELCCATION };

Volume 1, Part 1

/* search text relocaticn table for external symbol */

for (index = 0; index != length; index++)
{
tr = ginput_object{ object _number |.tr{ Iindex ,;
1f { tr->r_extern)
{
string = input _object’ obiect number ' .symbol]{

.n_un.n_name;

o
la
s

-

list = find_symbol{ string);

Lr->r_sympolnum

resclve _external sympol(list->object number);

if (list !'= NULL)
else
{

fprintf({ stderr, "WARNING:

-

}

/* calculate data relocation table length =/
length = input_object!| cbject number .header.a drsize / sizeof{ RELOCATION);

symbcl{ string

)

/* search data relocation tablie for exlernal sympol */

for (index = 0; index != length; index++)

(dr = ginput_object[object number |.dr{ index |;
if (dr->r_extern)
4 string = input_oblect{ object number

_un.n_name;

\
"

-4 find symbcld siring)}

e,se

pronti ostaer:, “WARNI

i

resuive external sympoi

ist->cbiject

unreso.ved

unresolved reference

number 1},

reference

'g§s'\n",

P.symbeol{ dr->r_ symbolnum

tRs AN

—)

volid write_output_header()}
{
register int object number;

cutput object.header.a_text
output_object.header.a_data
output_object.header.a_bss

i

i

for = ob3

7. Appendix B: vicld program source 127

OO o

(object_number = 0; Ject _rumper = numper_object; oblect number-s)
if ('input_object ! cp ect rnurver | .reguired)
continue;
output_object.header.a text -= lnpul oblecl| copliect numper [.nheader.a lext;
output_obiject.header.a data -= Ingut _cblect! oblect numpber | .header.a fata;
output_object.header.a bss += .rpul opbject | object numper |.neader.a_bpss ;
I
output_object.header.a entry = N _TXTOFF{ output_object.heaaer);
output_object.header.a_trsize = 0;
output object.header.a_drsi:ze = {;
output_ object.header.a syms = 0;
fwrite(&outlpuZ object.neader, s.zeof(culput cpiect.header), I,
outlput _cbiject.file)
© /T write_output header */
ve.d
int object number;
stdeut, "MAP:An")
ject _numpber = 0; cbrect number = numper _cbect; oblect_ '
if (linput oblect| J.reguirea)
continue;
fprintf(stdout, "%¥-64s ", input_object | cbiect number ;.name };
fprintf(stdout, "%6d ", input objlect object numpber .header.a_texi }:
fprintf(stdout, “%€d\n”, inpat coject| obiect number | .neader.a data -
input _opject| object number !.header.a_bss)
)
fprintf(staout, "%-€4s ", "TCTAL");
fprintf(stdout, "%6d ", cutput_cblecl.nheader.a text);
fprintf(stdout, "%€cd\n", culpul ck-ectl.neader.a data *+ culput Cl'eci.neager.a
b
i /% print _map */

veld ypcate_public symbel()
I

register 1nt object numpber;

register int index;

int length;

SYMBOL *symbol;

LIST *lisc-

cutput oDieCL.Text C:
output object.data = C;
outputl cbjecti.bss = |
or (<

PU

128

].text;

] .data;

].bss ;

Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

for (index = 0; index != length; index++)
(symbol = &input_object{ object_number].symbel(index];
if ((sympbol->n_type & N _EXT) != N_EXT)
(list = find_symbol(symbol->n_un.n_name);
switch (list->n_tyr» & N_TYPE)
(case N_TEXT:
list->n_value += input_object[object_number
break;

case N_DATA:
list->n_value += input_object{ ohject number

break;

case N_BSS:
list->n_value += input_cobject(object_number

break;

}

output_object.text += (input_object[object number).header.a_text /

TEXT SIZE);

output_object.data += (input_object| object number].header.a_data /

DATA_SIZE);

output_object.bss += (input_object{ object_number].header.a_bss /

BSS _SIZE);

}

} /* update_public_symbol */

void write object_text{ object)
CBJECT *object;

{

register int index;
int length;

int address;
RELOCATION *tr;
unsigned short text;
LIST *list;

fseek (object->file, (long)N_TXTOFF(object->header), 0);
address = 0;

/* calculate text relocation table length */
length = object->header.a trsize ' sizeof(RELOCATION);

/* relocate text relocation table record */
for { index = 0; index !'= length; index++)
{

tr = gobject->tr{ index };

/* skip text */

while (address < tr~>r address)

{
fread({ stext, sizeof(text), 1, object->file);
fwrite(&text, sizecf(text), 1, output object.file);
address += sizeof(text ;

}

/* relocate text */

fread(&text, sizeof(texi)}, 1, cbiect->file);

if (tr=>r_extern)

{
1ist = find_symbcl{ objlecti->symbol| tr->r symbolpum j.n_unr.n name
if list '= NULL

rtext += list->n value;

else

7. Appendix B: vicld program source 129

switch (tr->r_symbolnum)
{
case N_TEXT:
text += object->text;
break;

case N_DATA:
text += object->data;
break;

case N_BSS:
text += object->bss ;
break;

}

fwrite(&text, sizeof(text), 1, output_object.file);
address += sizeof(text);
}

/* copy text */

while { address < object->header.a_text)

{
fread(&text, sizeof(text), 1, object->file);
fwrite(&text, sizeof(text), 1, output object.file);
address += sizeof(text);

}

} /* write object_text */

void write object data({ object)
OBJECT *object;
{

register int index;

int length;

int address;

RELOCATION *dr;

unsigned long data;

LIST *list;

fseek (object->file, (long)N DTAOFF({ object->header), 0);
address = 0O;

/* calculate data relocation table length */
length = object->header.a _drsize / sizeof (RELOCATION);

/* relocate data relocation table record */
for (index = 0; index != length; index++)
{

dr = &object-.-ir[index]:

/* skip data */

while (address < dr->r_address)

{
fread(&data, sizeof(data), 1, object->file });
fwrite(&data, sizeof(data), 1, output_object.file });
address += sizeof{ data);

}

/* relocate data */
fread(sdata, sizeof(data), 1, object->file);

if (dr->r_extern)
{

list = find_symbol{ object->symbol(dr->r_symbolnum }.n_un.n_name

if (list != NULL)
data += list->n_value;

else

switch (dr->r_symbolnum)
{
case N_TEXT:
data += oObject->text;
break;

case N _DATA:
data += object->data;

130 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

break;

case N_BSs:
data += object->bss ;
break;

}

fwrite(&data, sizeof(data J, 1, output object.file);
address += sizeof(data):

}

/* copy data */

while (address < object->header.a_data)

{
fread(&data, sizeof(data), 1, object->file);
fwrite(&data, sizeof(data), 1, output_object.file);
address += sizeof(data j;

}

} /* write object_data */

void write_output object()
{
register int object_number;

/* relocate text */
fseek (output_object.file, (long)N_TXTOFF(output_object.header), Q);

for (object_number = 0; object number != number_ object; cbject number++)
{
if (!input_object [object_number].reguired)
continue;

if ((input_object[object_number].file = fopen(input_object|
object_number j}.name, "r")) == NULL)
{

fprintf(stderr, "ERROR: unable to open '%s'\n", input_object|

object_number].name);
exit(1);
}

write_object_text(&input_object | object_number] };

fclose(input_object{ object number }.file);
}

/* relocate data */
fseek (output_object.file, (long)N_DTAOFF{ output_object.header), 0);

for (object_number = 0; object number !'= number_cbject; object number++)

{
if (!input_object! object number |.required)
continue;

if ((input_object! object number |.file = fopen(input_okblect!
object_number].name, "r"™)) == NULL)
{
fprintf(stcerr, "ERROR: unable to open '&s’'\n", ir-u- obiect

object number].name });
exit(1);
}

write object_data(&input_object| object _number |);

fclose(input_object| cbject _number |.file);

o]

}
} /* write output object */

#define PROGRAM argument({ 0 |}
#define ARGUMENT argument{ 1 + argument number |

int main(number argument, argument)
int number argument;

char *argument{ 1;

{

7. Appendix B: vicld program source 131
register int argument _number;

if (--number_argument == 0)

{
fprintf(stderr, "usage: %s <object> [<object> ...j\n", PROGRAM);
exit(1):

}

fprintf(stderr, "FPP/FPX LOADER version: 1.0 07/10/91\n");

initialize_symbol_table():

for (argument_number = 0; argument_number != number_argument; argument_number++)
if (strcmp{(ARGUMENT, "-map”) == 0)
{
map = 1;
continue;

}

input_object| number object].name = ARGUMENT;

input_object[number_object].required = 0;
if (++number_object == NUMBER_OBJECT)
{
fprintf(stderr, "ERROR: number_object == %d\n", NUMBER_OBJECT);

exit(1);
}
read_input_object();
add_public_symbol();
resolve_external symbol(0 };
#ifdef DEBUG

print_input_object(}:
#endif

output_object.name = strdup("a.out");
output object.required = 0;

if ((output_object.file = fopen(output_object.name, "w+")) == NULL)

{
fprintf(stderr, “ERROR: unable to open '$%s'\n", output_object.name);
exit{ 1);

}

write output_header{);

if (map)
print _map():

update_public_symbol();
#ifdef DEBUG
print_symbol table();
#¥endif
write_ output object(};
fclose(output object.file);
exit (number_error);

} /* main */

FILE: vicld/vicld.h

* Copyright 1991

* Georgia Institute of Technology

* Computer Engineering Research Laboratory
* Author: Stephen R. Wachtei

#define HEADER struct exec
#define STRING char

132 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

#define SYMBOL struct nlist
#define RELOCATION struct relocation_info

#define OBJECT struct object_type
OBJECT
{
char *name;
FILE *file;
HEADER header;
STRING *string;
SYMBOL *symbol;
RELOCATION *tr;
RELOCATION *dr;
int text;
int data;
int bss;
int required;

int compare(/* RELOCATION *entryl, RELOCATION *entry2 */);
void read_object_header(/* OBJECT *object */),

void read object strlnq(/* OBJECT *object */)'

void read_object_symbol{ /* OBJECT *object */);

void update object _symbol (/* OBJECT *object */);

void read_object_tT(/* OBJECT *object */);

void read _object “dr{ /* OBJECT *object */):

void read_lnput_ob]ect(/* void */);

void print_object header(/* OBJECT *object */ };

void print_object symbol(/* OBJECT *object */);

void print_object_tr(/* OBJECT *object */);

void print_ object “dr(/* OBJECT *object */);

void print_input object(/* void */);

void add publlc symbol(/* void */);

void resclve_external symbol(/* int object_number */);
void write output header(/* void */);

void print_map(/% void */ };

void update_public_symbol{ /* void */);

void write_object text(/* OBJECT *object */):

void write_object_data{ /* OBJECT *object */):

void write output object(y:

int main(7* int number _argument, char *argument(} */);

FILE: vicld/vicld_sym.c

* Copyright 1991

* Georgia Institute of Technology

* Computer Engineering Research Laboratory
*/

/’
- symbol --- symbol table and mapping routines
>/

#include <stdio.h>
#include <string.h>
kinclude "vicld_sym.h"

/'
* MAXHASH --- determines the hash table width.
b symtab --- the symbol table structure
t
/
#cdefine MAXHASH 311

¥define MAXESYMS 50

static LIST * symtab{MAXHASH];
/t
- external routine declarations
*/

char *malloc{);

/t

7. Appendix B: vicld program source

error_malloc --- error checking malloc routine
'I’
char *
error malloc(size)
unsigned int size;
{

char *p;

if (!(p = malloc(size)))

fprintf (stderr,"no more dynamic storage - aborting\n");
exit (1),
}

return{p);
} /* error_malloc */

/t
* hash ~-- scramble a name (hopefully) uniformly to fit in a table
*/

static unsigned int
hash (name)
register charT *name;
{
register unsigned int h = 0;
while (*name!
{
h <<= 4;
h "= *name++;

}

return{h % MAXHASH);
}
/*
* add_symbol --- enter a name into the symbol table
>/

LIST *

add_symbol (name)

char *name;

{
register LIST * p;
unsigned int h;

/t
* create an entry and insert it at the front of the table
=
/
h = hash(name);
p = (LIST *) error_malloc(sizeof (LIST));
p->n_name = strdup(name);
p->n_type = 0;
p->n_other = 0;
p~>n_hash = 0;
p->n_value = 0;
p->object number = 0;
p->next = symtab(h];
symtab(h] = p;
return(p);
}
/ﬁ
> find _symbol --- lookup a symbol in the symbol table
*
* find_symbol scans the symbol table and returns a pointer to
* the symbol table entry
*/
LIST *

find_symbol (name)
char *name;
{
register LIST * p;
unsigned int h;
h = hash(name);
for (p = symtab{hij; p '= 0; p = p->next)

133

134 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

if (stremp(p->n_name, name) == 0)
break;

return(p);

void initialize_symbol_table()
{

bzero (symtab, MAXHASH * sizeof (LIST *)):
} /* initialize_symbol_table */

void print_symbol_ table()
{

unsigned int h;
register LIST *p;

fprintf(stdout, ¥*SYMBOL TABLE:\n");

for (h = 0; h != MAXHASH; h++)
{
for (p = symtab[h]; p !'= 0; p = p->next)
{
fprintf(stdout, "%s %d %d %d %d\n",
p->n_name, p->n_type, p->n_other, p->n_hash, p->n_value);

}

fprintf(stdout, "\n");
} /* print_symbol_table */

FILE: vicld/vicld_sym.h

* Copyright 1991
* Georgia Institute of Technology
* Computer Engineering Research Laboratory
*
/

/* see struct nlist in a.out.h for explanantion of structure */

#define LIST struct list_type
LIST
{
char *n_name;
unsigned char n_type;
char n_other;
short n_hash;
unsigned long n_value;
int object number:;
LIST *next;

char *error malloc(/* unsigned int */);
LIST *add_symbol (/* char * */);

LIST *find_symbol {/* char * */);

void initialize_symbol_table(/* void */});
void print_symbol table(/* void */);

8. Appendix C: loadfpp program source 135

8. Appendix C: loadfpp program source

FILE: loadfpp/Makefile

#

Copyright 1991

Georgia Institute of Technology

Computer Engineering Research Laboratory
Author: Stephen R. Wachtel
¥

cflags = large optimize(3) debug \
searchinclude(:LIB:ic286/,:PFP:include/)

loadfpp: loadfpp.obj
submit :PFP:csd/cbndl(loadfpp, loadfpp.obj, debug)

loadfpp.obj: loadfpp.c
ic286 loadfpp.c $(cflags)

clean:
delete loadfpp,*.lst,*.obj,*.mp?

FILE: loadfpp/fpp.h

* Copyright 1991

* Georgia Institute of Technology

* Computer Engineering Research Laboratory
* Author: Stephen R. Wachtel

*/

FPP_CODE

{
/* word 0 */
unsigned s_index_register:4;
unsigned r_index_register:4;
unsigned f_index_register:4;
unsigned s_index_flag:1;
unsigned r_index_flag:1l;
unsigned f_index_flag:l;
unsigned msw_selector:1;

/* word 1 */
unsigned s_address:16;

/* word 2 */
unsigned r_address:16;

/* word 3 */

unsigned f_address:16;

/* word 4 */

unsigned mc325_opcode:3;
unsigned f to_s_flag:1;
unsigned _to_r flag:1;
unsigned £ flag:l;

unsigned read_opcode:2;
unsigned branch selector:1;
unsigned write_Spcode:B;
unsigned branch_opcode:4;

/* word 5 */

unsigned branch_address:12;

unsigned am2910_opcode:4;
bi

#define FPP_DATA struct fIpp_data_type
FPP_DATA
{

/* word 0 */

unsigned short lsw;

136 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

/* word 1 */
unsigned short msw;
bi

FILE: loadfpp/loadfpp.c

* Copyright 1991

* Georgia Institute of Technology

* Computer Engineering Research Laboratory
* Author: Stephen R. Wachtel

*/

#include <stdio.h>
#include <stdlib.h>
#include <host.h>

#include "a.out.h®
#include "fpp.h*

#define DATA PORT 0x0c000
#define STATUS_PORT 0x0e000

char *value;

unsigned long base;
unsigned long limit;
unsigned long type;

HEADER header;
unsigned short buffer{6){4096]);

FPP_CODE instruction;
unsigned short program_counter;

void stop_processor{ void)
{
unsigned short status;

status = 0;

poke (base + STATUS_PORT, &status,
peek { base + STATUS_PORT, &status,
if ((status & 4) !'= 4)

{

sizeof (

status

)

sizeof (status)

)i
):

fprintf(stderr, "ERROR: unable to stop the processor\n”);

exit(-1);
}
} /* stop_processor */

void start_processor{ void)
{

unsigned short status;

status = 1;
poke(base + STATUS_PORT, &status,
peek { base + STATUS_PORT, &status,

if ((status & 4) == §)
{

fprintf(stderr, "ERROR: unable to start the processor\n"

exit(-1);
1
} /* start_processor */

void send_data(unsigned short *buffer)
t

unsigned short count;

unsigned short status;

for (count = 0; count != 1024; cou
{

sizeof(

status

)

sizeof (status)

nt++)

peek (base + STATUS_PORT, &status,

sizeof {

)
);:

status)

):

)i

8. Appendix C: loadfpp program source 137

if ((status & 2) == 2)

{
poke{ base + DATA_PORT, buffer, sizeof(*buffer));
return;

fprintf(stderr, "ERROR: unable to send data\n");
exit(-1);
} /* send_data */

void receive_data{ unsigred short *buffer)
{

unsigned short count;

unsigned short status;

for (count = 0; count != 1024; count++)

{
peek (base + STATUS_PORT, &status, sizeof(status) };
if ((status & 1) == 1)

{
peek (base + DATA_PCRT, buffer, sizeof(*buffer) };
return;

}

fprintf{ stderr, "wKRCR: "rable to receive datal\n");
exit(-1);
} /* receive_data */

void reset_instruction(veid)

{
/* word 5 */
instruction.am2910_opcode = 14;
instruction.branch_address = 0;

/* word 4 */

instruction.branch_opcode = 0;
instruction.write_opcode ;
instruction.branch_selec =
instruction.read_opcode
instruction.f_ flag = 0;
instruction.f _to_r_flag = 0;
instruction.f_to_s_flag = 0;
instruction.mc325_opcode = 0;

[s
[3]

/* word 3 */
instruction.f_address = 0;

/* word 2 */
instruction.r_address

o
fu

/* word 1 */
instruction.s_address

W
-

/* word 0 */

instruction.msw_selector
instruction.f_index_flag
instruction.r_index_flag
instruction.s_index_flag
instruction.f_index_register
instruction.r_index_register
instruction.s_index_register

} /* reset_instruction */

[eNeNoNe)

o
oo Re]

void load_jinmstruction(void)
{
unsigned short index;

if (program_counter == 4096
{

fprintf(stderr, "ERROR: number instruction > 4096\n");
exit(-1);
}

for (index = 0; index !'= 6; index++)
{

buffer[index][program _counter ! = ((unsigned short *)&instruction)i

138 Annual Report: Digital Emulation Technology Laboratory Volume 1, Part 1

index J;

}

program_counter++:
} /% 1oad instractinn */

void generate_receive(unsigned short address)
{
unsigned short count = 2;

reset_instruction();

instruction.f_address = address;
if (address == 1)
{
instruction.s_address
instruction.r_address

[}
(=3

}

while (count != 0)
{

instruction.msw_selector = --count;

instruction.am2910 opcode = 14
instruction.branch address = 0
instruction.branch:opcode = 0;
instruction.write_opcode = 0;
load_instruction();

instruction.an2910 opcode = 3;
instruction.branch_address = program_counter;
inst.uection.branch_crnode = 2;
instruction.write_opcode = 2;
load_instruction();
}
} /* generate_receive */

void generate_send(unsigned short address)
{
unsigned short count = 2;

reset_instruction();

instruction.s_address = address;
instruction.r_address = address;
if (address == 0)
{

instruction.f address = 1;
}

while (count != 0)
{

instruction.msw_selector = --count;

instruction.am2910 opcode = 14
instruction.branch address = 0
instruction.branch_opcode =
instruction.read_opcode = 0;
load_instruction(*;

’
I

instruction.am2910 opcode = 3;
instruction.branch:address = program_counter;
instruction.branch_opcode = 3;
instruction.read_opcode = 2;
load_instruction();

}

} /* generate_send */

void load_boot (char *path)

{
FILE *file;
unsigned short length;
unsigned short offset;

stop_processor{);

if ((file = fopen(path, "rb" }) == (FILE *)NULL)
{

8. Appendix /*: loadfpp prugram source 139

fprintf{ stderr, "ERROR: unable toc open for read ‘'%s'\n", path);
exit({ -1)
}

if (fread(sheader, sizeof{ heacder), 1, file) != 1)
fprintf(stderr, "ERROR: unable to read header\n");
exit(-1);

}

program_counter = 0;

reset_instruction():
load instruction();

lenarh = header.a_data / sizeof(FPP_DATA);

for (offset = 0; offset != length; offset++)
{

¢ifdef DEBUG

generate_receive(offset);

generate_send(offset });
¥endif
}

reset_instruction();

instruction.am2910 opcocde 3;
instruction.branch opcode 12;
instruction.branch:address = program counter;
load_instruction() B

poke{ base, buffer, sizeocf(buffer) });

fclose(file);
} /= load_boot */

void load_data(char *path)

{
FILE *file;
unsigned short length;
unsiyned shor. cffset;
FPP_DATA w_buffer;
FPP_DATA r_buffer;

start_processor{);

if ((file = fopen{ path, "rb")) == (FILE *)NULL)
{

fprintf(stderr, "ERROR: unable to open for read ‘%s'\n", path);
exit(-1)7

if (fread(aheader, sizeof(header), 1, tile) != 1)
fprintf({ stcderr, "ERROR: unable tc read headerin® };
exit(-1):

}

length = header.a data / sizeof(Frl _DATA);
fseek(file, N_DTAOFF{ header), 0);

for (offset = 0; offset != length; offset++)
{
if (fread(&w_buffer, sizeof(FPP_DATA), 1, file) != 1)
{
fprintf(stderr, "ERRCR: unable to read data\n");

exit{ -1);
}

send_data(&w _buffer.msw);
send data(&w_buffer.lsw };
#ifde® DEBUG
receive_data{ &r_buffer.msw };
receive data(&r_bulfer.lisw)
if ((w buffer.msw '= r buffer.msw) :, (w buffer.isw '= r buffer.lsw)

{

fprintf(stderr, "EZRROR: data(%u), w=%04x%04x, r=%C4x%C4x\n",
offset, w buffer.msw, w cuffer.lsw, r buffer.msw, r buffer.lisw };
exit(-1); -

140 Annual Report: Digital Emulation Technology Laboratory Volume 1. Part 1

}
tendif
}

fclose(file);
} /* load_boot */

void load_code(char *path)

{
FILE *file;
unsigned short length;
unsigned short offset;

stop_processor{ };

i€ ((file = fopen{ path, "rb")) == (FILE *)NULL)

{
fprintf(stderr, "ERROR: unable tc open for read '%s'\n", path);
exit(-1);

if (fread(sheader, sizeof(header), 1, file) != 1)

fprintf(stderr, "ERROR: unable to read header\n");
exit(-1),
)

program_counter = 0;

iength = header.a text / sizeof(FPP_CCDE);
fseek (file, N_TXTOFF(header), C)

for (offset = 0; offset != length; ocffset++)

if (tread{(&instruction, sizeof{ FPP _CODE), 1, file) != 1)
(.
fprintf(stderr, "ERROR: unable to read code\n");
exit(-1);
}
load_instruction{);
}

poke{ base, buffer, sizeof(buffer));

fclose(file)
} /* load_code */

sdefine PROGRAM argument[0]
#define ARGUMENT argument| argument _number |

void main{ int number_argument, char *argument{ !)
{

int argument_number = §;

char name{25%6];

char path(256];

initialize environment (":HOME:ENVIRONMENT");
if (--number_argument == 0)
{

fprintf{ stderr, "usage: %5 <name>=<path>...<name>=<path>\n", PRCGRAM)
exit(C),

whiie (argument number++ '= nurber dargument)
if { sscanf{ ARGUMENT, "% "= =%s", rame, path) != 2)
i

fprintf{ stderr, "ZRECR: .nable tCc parse argurment '%¥s'\n", ARGUMENT

exit{ -1)

if ({ value = geterv(nare)) == NULL)

i

feprintf(staoul, "IRRCR: '$s' rot founc in envircnrentan'™, name
) :

N

exit{ -1 ;

8. Appendix C: loadfpp program source 141

}

1f (sscanf{ value, "%iIx;%.x;%.x;", &bas~. flimit, &type) '= 3)
{
fprintf(stdout, "“ZIRRCR: uynable to parse '%s = %s'\n", name, va..ie

exit{ -1);

}

fprintf(stdout, *“loading %s\n", nauwe);
load_boot (path);
load_data{(path);
load_code (path);

fprintf(stdout, "starting %s\n", name);
start_processor{);
}

exit{(0);
} /* main */

